blob: 09d40fd2c9901773ece5de9201a4c7ab9236eb4b [file] [log] [blame]
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package graph
import (
"fmt"
"io"
"math"
"path/filepath"
"strings"
"github.com/google/pprof/internal/measurement"
)
// DotAttributes contains details about the graph itself, giving
// insight into how its elements should be rendered.
type DotAttributes struct {
Nodes map[*Node]*DotNodeAttributes // A map allowing each Node to have its own visualization option
}
// DotNodeAttributes contains Node specific visualization options.
type DotNodeAttributes struct {
Shape string // The optional shape of the node when rendered visually
Bold bool // If the node should be bold or not
Peripheries int // An optional number of borders to place around a node
URL string // An optional url link to add to a node
Formatter func(*NodeInfo) string // An optional formatter for the node's label
}
// DotConfig contains attributes about how a graph should be
// constructed and how it should look.
type DotConfig struct {
Title string // The title of the DOT graph
LegendURL string // The URL to link to from the legend.
Labels []string // The labels for the DOT's legend
FormatValue func(int64) string // A formatting function for values
Total int64 // The total weight of the graph, used to compute percentages
}
const maxNodelets = 4 // Number of nodelets for labels (both numeric and non)
// ComposeDot creates and writes a in the DOT format to the writer, using
// the configurations given.
func ComposeDot(w io.Writer, g *Graph, a *DotAttributes, c *DotConfig) {
builder := &builder{w, a, c}
// Begin constructing DOT by adding a title and legend.
builder.start()
defer builder.finish()
builder.addLegend()
if len(g.Nodes) == 0 {
return
}
// Preprocess graph to get id map and find max flat.
nodeIDMap := make(map[*Node]int)
hasNodelets := make(map[*Node]bool)
maxFlat := float64(abs64(g.Nodes[0].FlatValue()))
for i, n := range g.Nodes {
nodeIDMap[n] = i + 1
if float64(abs64(n.FlatValue())) > maxFlat {
maxFlat = float64(abs64(n.FlatValue()))
}
}
edges := EdgeMap{}
// Add nodes and nodelets to DOT builder.
for _, n := range g.Nodes {
builder.addNode(n, nodeIDMap[n], maxFlat)
hasNodelets[n] = builder.addNodelets(n, nodeIDMap[n])
// Collect all edges. Use a fake node to support multiple incoming edges.
for _, e := range n.Out {
edges[&Node{}] = e
}
}
// Add edges to DOT builder. Sort edges by frequency as a hint to the graph layout engine.
for _, e := range edges.Sort() {
builder.addEdge(e, nodeIDMap[e.Src], nodeIDMap[e.Dest], hasNodelets[e.Src])
}
}
// builder wraps an io.Writer and understands how to compose DOT formatted elements.
type builder struct {
io.Writer
attributes *DotAttributes
config *DotConfig
}
// start generates a title and initial node in DOT format.
func (b *builder) start() {
graphname := "unnamed"
if b.config.Title != "" {
graphname = b.config.Title
}
fmt.Fprintln(b, `digraph "`+graphname+`" {`)
fmt.Fprintln(b, `node [style=filled fillcolor="#f8f8f8"]`)
}
// finish closes the opening curly bracket in the constructed DOT buffer.
func (b *builder) finish() {
fmt.Fprintln(b, "}")
}
// addLegend generates a legend in DOT format.
func (b *builder) addLegend() {
labels := b.config.Labels
if len(labels) == 0 {
return
}
title := labels[0]
fmt.Fprintf(b, `subgraph cluster_L { "%s" [shape=box fontsize=16`, escapeForDot(title))
fmt.Fprintf(b, ` label="%s\l"`, strings.Join(escapeAllForDot(labels), `\l`))
if b.config.LegendURL != "" {
fmt.Fprintf(b, ` URL="%s" target="_blank"`, b.config.LegendURL)
}
if b.config.Title != "" {
fmt.Fprintf(b, ` tooltip="%s"`, b.config.Title)
}
fmt.Fprintf(b, "] }\n")
}
// addNode generates a graph node in DOT format.
func (b *builder) addNode(node *Node, nodeID int, maxFlat float64) {
flat, cum := node.FlatValue(), node.CumValue()
attrs := b.attributes.Nodes[node]
// Populate label for node.
var label string
if attrs != nil && attrs.Formatter != nil {
label = attrs.Formatter(&node.Info)
} else {
label = multilinePrintableName(&node.Info)
}
flatValue := b.config.FormatValue(flat)
if flat != 0 {
label = label + fmt.Sprintf(`%s (%s)`,
flatValue,
strings.TrimSpace(measurement.Percentage(flat, b.config.Total)))
} else {
label = label + "0"
}
cumValue := flatValue
if cum != flat {
if flat != 0 {
label = label + `\n`
} else {
label = label + " "
}
cumValue = b.config.FormatValue(cum)
label = label + fmt.Sprintf(`of %s (%s)`,
cumValue,
strings.TrimSpace(measurement.Percentage(cum, b.config.Total)))
}
// Scale font sizes from 8 to 24 based on percentage of flat frequency.
// Use non linear growth to emphasize the size difference.
baseFontSize, maxFontGrowth := 8, 16.0
fontSize := baseFontSize
if maxFlat != 0 && flat != 0 && float64(abs64(flat)) <= maxFlat {
fontSize += int(math.Ceil(maxFontGrowth * math.Sqrt(float64(abs64(flat))/maxFlat)))
}
// Determine node shape.
shape := "box"
if attrs != nil && attrs.Shape != "" {
shape = attrs.Shape
}
// Create DOT attribute for node.
attr := fmt.Sprintf(`label="%s" id="node%d" fontsize=%d shape=%s tooltip="%s (%s)" color="%s" fillcolor="%s"`,
label, nodeID, fontSize, shape, escapeForDot(node.Info.PrintableName()), cumValue,
dotColor(float64(node.CumValue())/float64(abs64(b.config.Total)), false),
dotColor(float64(node.CumValue())/float64(abs64(b.config.Total)), true))
// Add on extra attributes if provided.
if attrs != nil {
// Make bold if specified.
if attrs.Bold {
attr += ` style="bold,filled"`
}
// Add peripheries if specified.
if attrs.Peripheries != 0 {
attr += fmt.Sprintf(` peripheries=%d`, attrs.Peripheries)
}
// Add URL if specified. target="_blank" forces the link to open in a new tab.
if attrs.URL != "" {
attr += fmt.Sprintf(` URL="%s" target="_blank"`, attrs.URL)
}
}
fmt.Fprintf(b, "N%d [%s]\n", nodeID, attr)
}
// addNodelets generates the DOT boxes for the node tags if they exist.
func (b *builder) addNodelets(node *Node, nodeID int) bool {
var nodelets string
// Populate two Tag slices, one for LabelTags and one for NumericTags.
var ts []*Tag
lnts := make(map[string][]*Tag)
for _, t := range node.LabelTags {
ts = append(ts, t)
}
for l, tm := range node.NumericTags {
for _, t := range tm {
lnts[l] = append(lnts[l], t)
}
}
// For leaf nodes, print cumulative tags (includes weight from
// children that have been deleted).
// For internal nodes, print only flat tags.
flatTags := len(node.Out) > 0
// Select the top maxNodelets alphanumeric labels by weight.
SortTags(ts, flatTags)
if len(ts) > maxNodelets {
ts = ts[:maxNodelets]
}
for i, t := range ts {
w := t.CumValue()
if flatTags {
w = t.FlatValue()
}
if w == 0 {
continue
}
weight := b.config.FormatValue(w)
nodelets += fmt.Sprintf(`N%d_%d [label = "%s" id="N%d_%d" fontsize=8 shape=box3d tooltip="%s"]`+"\n", nodeID, i, t.Name, nodeID, i, weight)
nodelets += fmt.Sprintf(`N%d -> N%d_%d [label=" %s" weight=100 tooltip="%s" labeltooltip="%s"]`+"\n", nodeID, nodeID, i, weight, weight, weight)
if nts := lnts[t.Name]; nts != nil {
nodelets += b.numericNodelets(nts, maxNodelets, flatTags, fmt.Sprintf(`N%d_%d`, nodeID, i))
}
}
if nts := lnts[""]; nts != nil {
nodelets += b.numericNodelets(nts, maxNodelets, flatTags, fmt.Sprintf(`N%d`, nodeID))
}
fmt.Fprint(b, nodelets)
return nodelets != ""
}
func (b *builder) numericNodelets(nts []*Tag, maxNumNodelets int, flatTags bool, source string) string {
nodelets := ""
// Collapse numeric labels into maxNumNodelets buckets, of the form:
// 1MB..2MB, 3MB..5MB, ...
for j, t := range b.collapsedTags(nts, maxNumNodelets, flatTags) {
w, attr := t.CumValue(), ` style="dotted"`
if flatTags || t.FlatValue() == t.CumValue() {
w, attr = t.FlatValue(), ""
}
if w != 0 {
weight := b.config.FormatValue(w)
nodelets += fmt.Sprintf(`N%s_%d [label = "%s" id="N%s_%d" fontsize=8 shape=box3d tooltip="%s"]`+"\n", source, j, t.Name, source, j, weight)
nodelets += fmt.Sprintf(`%s -> N%s_%d [label=" %s" weight=100 tooltip="%s" labeltooltip="%s"%s]`+"\n", source, source, j, weight, weight, weight, attr)
}
}
return nodelets
}
// addEdge generates a graph edge in DOT format.
func (b *builder) addEdge(edge *Edge, from, to int, hasNodelets bool) {
var inline string
if edge.Inline {
inline = `\n (inline)`
}
w := b.config.FormatValue(edge.WeightValue())
attr := fmt.Sprintf(`label=" %s%s"`, w, inline)
if b.config.Total != 0 {
// Note: edge.weight > b.config.Total is possible for profile diffs.
if weight := 1 + int(min64(abs64(edge.WeightValue()*100/b.config.Total), 100)); weight > 1 {
attr = fmt.Sprintf(`%s weight=%d`, attr, weight)
}
if width := 1 + int(min64(abs64(edge.WeightValue()*5/b.config.Total), 5)); width > 1 {
attr = fmt.Sprintf(`%s penwidth=%d`, attr, width)
}
attr = fmt.Sprintf(`%s color="%s"`, attr,
dotColor(float64(edge.WeightValue())/float64(abs64(b.config.Total)), false))
}
arrow := "->"
if edge.Residual {
arrow = "..."
}
tooltip := fmt.Sprintf(`"%s %s %s (%s)"`,
escapeForDot(edge.Src.Info.PrintableName()), arrow,
escapeForDot(edge.Dest.Info.PrintableName()), w)
attr = fmt.Sprintf(`%s tooltip=%s labeltooltip=%s`, attr, tooltip, tooltip)
if edge.Residual {
attr = attr + ` style="dotted"`
}
if hasNodelets {
// Separate children further if source has tags.
attr = attr + " minlen=2"
}
fmt.Fprintf(b, "N%d -> N%d [%s]\n", from, to, attr)
}
// dotColor returns a color for the given score (between -1.0 and
// 1.0), with -1.0 colored green, 0.0 colored grey, and 1.0 colored
// red. If isBackground is true, then a light (low-saturation)
// color is returned (suitable for use as a background color);
// otherwise, a darker color is returned (suitable for use as a
// foreground color).
func dotColor(score float64, isBackground bool) string {
// A float between 0.0 and 1.0, indicating the extent to which
// colors should be shifted away from grey (to make positive and
// negative values easier to distinguish, and to make more use of
// the color range.)
const shift = 0.7
// Saturation and value (in hsv colorspace) for background colors.
const bgSaturation = 0.1
const bgValue = 0.93
// Saturation and value (in hsv colorspace) for foreground colors.
const fgSaturation = 1.0
const fgValue = 0.7
// Choose saturation and value based on isBackground.
var saturation float64
var value float64
if isBackground {
saturation = bgSaturation
value = bgValue
} else {
saturation = fgSaturation
value = fgValue
}
// Limit the score values to the range [-1.0, 1.0].
score = math.Max(-1.0, math.Min(1.0, score))
// Reduce saturation near score=0 (so it is colored grey, rather than yellow).
if math.Abs(score) < 0.2 {
saturation *= math.Abs(score) / 0.2
}
// Apply 'shift' to move scores away from 0.0 (grey).
if score > 0.0 {
score = math.Pow(score, (1.0 - shift))
}
if score < 0.0 {
score = -math.Pow(-score, (1.0 - shift))
}
var r, g, b float64 // red, green, blue
if score < 0.0 {
g = value
r = value * (1 + saturation*score)
} else {
r = value
g = value * (1 - saturation*score)
}
b = value * (1 - saturation)
return fmt.Sprintf("#%02x%02x%02x", uint8(r*255.0), uint8(g*255.0), uint8(b*255.0))
}
func multilinePrintableName(info *NodeInfo) string {
infoCopy := *info
infoCopy.Name = escapeForDot(ShortenFunctionName(infoCopy.Name))
infoCopy.Name = strings.Replace(infoCopy.Name, "::", `\n`, -1)
// Go type parameters are reported as "[...]" by Go pprof profiles.
// Keep this ellipsis rather than replacing with newlines below.
infoCopy.Name = strings.Replace(infoCopy.Name, "[...]", "[…]", -1)
infoCopy.Name = strings.Replace(infoCopy.Name, ".", `\n`, -1)
if infoCopy.File != "" {
infoCopy.File = filepath.Base(infoCopy.File)
}
return strings.Join(infoCopy.NameComponents(), `\n`) + `\n`
}
// collapsedTags trims and sorts a slice of tags.
func (b *builder) collapsedTags(ts []*Tag, count int, flatTags bool) []*Tag {
ts = SortTags(ts, flatTags)
if len(ts) <= count {
return ts
}
tagGroups := make([][]*Tag, count)
for i, t := range (ts)[:count] {
tagGroups[i] = []*Tag{t}
}
for _, t := range (ts)[count:] {
g, d := 0, tagDistance(t, tagGroups[0][0])
for i := 1; i < count; i++ {
if nd := tagDistance(t, tagGroups[i][0]); nd < d {
g, d = i, nd
}
}
tagGroups[g] = append(tagGroups[g], t)
}
var nts []*Tag
for _, g := range tagGroups {
l, w, c := b.tagGroupLabel(g)
nts = append(nts, &Tag{
Name: l,
Flat: w,
Cum: c,
})
}
return SortTags(nts, flatTags)
}
func tagDistance(t, u *Tag) float64 {
v, _ := measurement.Scale(u.Value, u.Unit, t.Unit)
if v < float64(t.Value) {
return float64(t.Value) - v
}
return v - float64(t.Value)
}
func (b *builder) tagGroupLabel(g []*Tag) (label string, flat, cum int64) {
if len(g) == 1 {
t := g[0]
return measurement.Label(t.Value, t.Unit), t.FlatValue(), t.CumValue()
}
min := g[0]
max := g[0]
df, f := min.FlatDiv, min.Flat
dc, c := min.CumDiv, min.Cum
for _, t := range g[1:] {
if v, _ := measurement.Scale(t.Value, t.Unit, min.Unit); int64(v) < min.Value {
min = t
}
if v, _ := measurement.Scale(t.Value, t.Unit, max.Unit); int64(v) > max.Value {
max = t
}
f += t.Flat
df += t.FlatDiv
c += t.Cum
dc += t.CumDiv
}
if df != 0 {
f = f / df
}
if dc != 0 {
c = c / dc
}
// Tags are not scaled with the selected output unit because tags are often
// much smaller than other values which appear, so the range of tag sizes
// sometimes would appear to be "0..0" when scaled to the selected output unit.
return measurement.Label(min.Value, min.Unit) + ".." + measurement.Label(max.Value, max.Unit), f, c
}
func min64(a, b int64) int64 {
if a < b {
return a
}
return b
}
// escapeAllForDot applies escapeForDot to all strings in the given slice.
func escapeAllForDot(in []string) []string {
var out = make([]string, len(in))
for i := range in {
out[i] = escapeForDot(in[i])
}
return out
}
// escapeForDot escapes double quotes and backslashes, and replaces Graphviz's
// "center" character (\n) with a left-justified character.
// See https://graphviz.org/docs/attr-types/escString/ for more info.
func escapeForDot(str string) string {
return strings.ReplaceAll(strings.ReplaceAll(strings.ReplaceAll(str, `\`, `\\`), `"`, `\"`), "\n", `\l`)
}