| /****************************************************************************** |
| * |
| * Copyright 2022 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| ******************************************************************************/ |
| |
| #ifndef __LC3_FASTMATH_H |
| #define __LC3_FASTMATH_H |
| |
| #include <stdint.h> |
| #include <float.h> |
| #include <math.h> |
| |
| |
| /** |
| * IEEE 754 Floating point representation |
| */ |
| |
| #define LC3_IEEE754_SIGN_SHL (31) |
| #define LC3_IEEE754_SIGN_MASK (1 << LC3_IEEE754_SIGN_SHL) |
| |
| #define LC3_IEEE754_EXP_SHL (23) |
| #define LC3_IEEE754_EXP_MASK (0xff << LC3_IEEE754_EXP_SHL) |
| #define LC3_IEEE754_EXP_BIAS (127) |
| |
| |
| /** |
| * Fast multiply floating-point number by integral power of 2 |
| * x Operand, finite number |
| * exp Exponent such that 2^x is finite |
| * return 2^exp |
| */ |
| static inline float lc3_ldexpf(float _x, int exp) { |
| union { float f; int32_t s; } x = { .f = _x }; |
| |
| if (x.s & LC3_IEEE754_EXP_MASK) |
| x.s += exp << LC3_IEEE754_EXP_SHL; |
| |
| return x.f; |
| } |
| |
| /** |
| * Fast convert floating-point number to fractional and integral components |
| * x Operand, finite number |
| * exp Return the exponent part |
| * return The normalized fraction in [0.5:1[ |
| */ |
| static inline float lc3_frexpf(float _x, int *exp) { |
| union { float f; uint32_t u; } x = { .f = _x }; |
| |
| int e = (x.u & LC3_IEEE754_EXP_MASK) >> LC3_IEEE754_EXP_SHL; |
| *exp = e - (LC3_IEEE754_EXP_BIAS - 1); |
| |
| x.u = (x.u & ~LC3_IEEE754_EXP_MASK) | |
| ((LC3_IEEE754_EXP_BIAS - 1) << LC3_IEEE754_EXP_SHL); |
| |
| return x.f; |
| } |
| |
| /** |
| * Fast 2^n approximation |
| * x Operand, range -100 to 100 |
| * return 2^x approximation (max relative error ~ 4e-7) |
| */ |
| static inline float lc3_exp2f(float x) |
| { |
| /* --- 2^(i/8) for i from 0 to 7 --- */ |
| |
| static const float e[] = { |
| 1.00000000e+00, 1.09050773e+00, 1.18920712e+00, 1.29683955e+00, |
| 1.41421356e+00, 1.54221083e+00, 1.68179283e+00, 1.83400809e+00 }; |
| |
| /* --- Polynomial approx in range 0 to 1/8 --- */ |
| |
| static const float p[] = { |
| 1.00448128e-02, 5.54563260e-02, 2.40228756e-01, 6.93147140e-01 }; |
| |
| /* --- Split the operand --- |
| * |
| * Such as x = k/8 + y, with k an integer, and |y| < 0.5/8 |
| * |
| * Note that `fast-math` compiler option leads to rounding error, |
| * disable optimisation with `volatile`. */ |
| |
| volatile union { float f; int32_t s; } v; |
| |
| v.f = x + 0x1.8p20f; |
| int k = v.s; |
| x -= v.f - 0x1.8p20f; |
| |
| /* --- Compute 2^x, with |x| < 1 --- |
| * Perform polynomial approximation in range -0.5/8 to 0.5/8, |
| * and muplity by precomputed value of 2^(i/8), i in [0:7] */ |
| |
| union { float f; int32_t s; } y; |
| |
| y.f = ( p[0]) * x; |
| y.f = (y.f + p[1]) * x; |
| y.f = (y.f + p[2]) * x; |
| y.f = (y.f + p[3]) * x; |
| y.f = (y.f + 1.f) * e[k & 7]; |
| |
| /* --- Add the exponent --- */ |
| |
| y.s += (k >> 3) << LC3_IEEE754_EXP_SHL; |
| |
| return y.f; |
| } |
| |
| /** |
| * Fast log2(x) approximation |
| * x Operand, greater than 0 |
| * return log2(x) approximation (max absolute error ~ 1e-4) |
| */ |
| static inline float lc3_log2f(float x) |
| { |
| float y; |
| int e; |
| |
| /* --- Polynomial approx in range 0.5 to 1 --- */ |
| |
| static const float c[] = { |
| -1.29479677, 5.11769018, -8.42295281, 8.10557963, -3.50567360 }; |
| |
| x = lc3_frexpf(x, &e); |
| |
| y = ( c[0]) * x; |
| y = (y + c[1]) * x; |
| y = (y + c[2]) * x; |
| y = (y + c[3]) * x; |
| y = (y + c[4]); |
| |
| /* --- Add log2f(2^e) and return --- */ |
| |
| return e + y; |
| } |
| |
| /** |
| * Fast log10(x) approximation |
| * x Operand, greater than 0 |
| * return log10(x) approximation (max absolute error ~ 1e-4) |
| */ |
| static inline float lc3_log10f(float x) |
| { |
| return log10f(2) * lc3_log2f(x); |
| } |
| |
| /** |
| * Fast `10 * log10(x)` (or dB) approximation in fixed Q16 |
| * x Operand, in range 2^-63 to 2^63 (1e-19 to 1e19) |
| * return 10 * log10(x) in fixed Q16 (-190 to 192 dB) |
| * |
| * - The 0 value is accepted and return the minimum value ~ -191dB |
| * - This function assumed that float 32 bits is coded IEEE 754 |
| */ |
| static inline int32_t lc3_db_q16(float x) |
| { |
| /* --- Table in Q15 --- */ |
| |
| static const uint16_t t[][2] = { |
| |
| /* [n][0] = 10 * log10(2) * log2(1 + n/32), with n = [0..15] */ |
| /* [n][1] = [n+1][0] - [n][0] (while defining [16][0]) */ |
| |
| { 0, 4379 }, { 4379, 4248 }, { 8627, 4125 }, { 12753, 4009 }, |
| { 16762, 3899 }, { 20661, 3795 }, { 24456, 3697 }, { 28153, 3603 }, |
| { 31755, 3514 }, { 35269, 3429 }, { 38699, 3349 }, { 42047, 3272 }, |
| { 45319, 3198 }, { 48517, 3128 }, { 51645, 3061 }, { 54705, 2996 }, |
| |
| /* [n][0] = 10 * log10(2) * log2(1 + n/32) - 10 * log10(2) / 2, */ |
| /* with n = [16..31] */ |
| /* [n][1] = [n+1][0] - [n][0] (while defining [32][0]) */ |
| |
| { 8381, 2934 }, { 11315, 2875 }, { 14190, 2818 }, { 17008, 2763 }, |
| { 19772, 2711 }, { 22482, 2660 }, { 25142, 2611 }, { 27754, 2564 }, |
| { 30318, 2519 }, { 32837, 2475 }, { 35312, 2433 }, { 37744, 2392 }, |
| { 40136, 2352 }, { 42489, 2314 }, { 44803, 2277 }, { 47080, 2241 }, |
| |
| }; |
| |
| /* --- Approximation --- |
| * |
| * 10 * log10(x^2) = 10 * log10(2) * log2(x^2) |
| * |
| * And log2(x^2) = 2 * log2( (1 + m) * 2^e ) |
| * = 2 * (e + log2(1 + m)) , with m in range [0..1] |
| * |
| * Split the float values in : |
| * e2 Double value of the exponent (2 * e + k) |
| * hi High 5 bits of mantissa, for precalculated result `t[hi][0]` |
| * lo Low 16 bits of mantissa, for linear interpolation `t[hi][1]` |
| * |
| * Two cases, from the range of the mantissa : |
| * 0 to 0.5 `k = 0`, use 1st part of the table |
| * 0.5 to 1 `k = 1`, use 2nd part of the table */ |
| |
| union { float f; uint32_t u; } x2 = { .f = x*x }; |
| |
| int e2 = (int)(x2.u >> 22) - 2*127; |
| int hi = (x2.u >> 18) & 0x1f; |
| int lo = (x2.u >> 2) & 0xffff; |
| |
| return e2 * 49321 + t[hi][0] + ((t[hi][1] * lo) >> 16); |
| } |
| |
| |
| #endif /* __LC3_FASTMATH_H */ |