blob: 86cbdfa2c817e997a1bb0a98067e5853a3e90181 [file] [log] [blame] [edit]
/******************************************************************************
*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#ifndef __LC3_FASTMATH_H
#define __LC3_FASTMATH_H
#include <stdint.h>
#include <float.h>
#include <math.h>
/**
* IEEE 754 Floating point representation
*/
#define LC3_IEEE754_SIGN_SHL (31)
#define LC3_IEEE754_SIGN_MASK (1 << LC3_IEEE754_SIGN_SHL)
#define LC3_IEEE754_EXP_SHL (23)
#define LC3_IEEE754_EXP_MASK (0xff << LC3_IEEE754_EXP_SHL)
#define LC3_IEEE754_EXP_BIAS (127)
/**
* Fast multiply floating-point number by integral power of 2
* x Operand, finite number
* exp Exponent such that 2^x is finite
* return 2^exp
*/
static inline float lc3_ldexpf(float _x, int exp) {
union { float f; int32_t s; } x = { .f = _x };
if (x.s & LC3_IEEE754_EXP_MASK)
x.s += exp << LC3_IEEE754_EXP_SHL;
return x.f;
}
/**
* Fast convert floating-point number to fractional and integral components
* x Operand, finite number
* exp Return the exponent part
* return The normalized fraction in [0.5:1[
*/
static inline float lc3_frexpf(float _x, int *exp) {
union { float f; uint32_t u; } x = { .f = _x };
int e = (x.u & LC3_IEEE754_EXP_MASK) >> LC3_IEEE754_EXP_SHL;
*exp = e - (LC3_IEEE754_EXP_BIAS - 1);
x.u = (x.u & ~LC3_IEEE754_EXP_MASK) |
((LC3_IEEE754_EXP_BIAS - 1) << LC3_IEEE754_EXP_SHL);
return x.f;
}
/**
* Fast 2^n approximation
* x Operand, range -100 to 100
* return 2^x approximation (max relative error ~ 4e-7)
*/
static inline float lc3_exp2f(float x)
{
/* --- 2^(i/8) for i from 0 to 7 --- */
static const float e[] = {
1.00000000e+00, 1.09050773e+00, 1.18920712e+00, 1.29683955e+00,
1.41421356e+00, 1.54221083e+00, 1.68179283e+00, 1.83400809e+00 };
/* --- Polynomial approx in range 0 to 1/8 --- */
static const float p[] = {
1.00448128e-02, 5.54563260e-02, 2.40228756e-01, 6.93147140e-01 };
/* --- Split the operand ---
*
* Such as x = k/8 + y, with k an integer, and |y| < 0.5/8
*
* Note that `fast-math` compiler option leads to rounding error,
* disable optimisation with `volatile`. */
volatile union { float f; int32_t s; } v;
v.f = x + 0x1.8p20f;
int k = v.s;
x -= v.f - 0x1.8p20f;
/* --- Compute 2^x, with |x| < 1 ---
* Perform polynomial approximation in range -0.5/8 to 0.5/8,
* and muplity by precomputed value of 2^(i/8), i in [0:7] */
union { float f; int32_t s; } y;
y.f = ( p[0]) * x;
y.f = (y.f + p[1]) * x;
y.f = (y.f + p[2]) * x;
y.f = (y.f + p[3]) * x;
y.f = (y.f + 1.f) * e[k & 7];
/* --- Add the exponent --- */
y.s += (k >> 3) << LC3_IEEE754_EXP_SHL;
return y.f;
}
/**
* Fast log2(x) approximation
* x Operand, greater than 0
* return log2(x) approximation (max absolute error ~ 1e-4)
*/
static inline float lc3_log2f(float x)
{
float y;
int e;
/* --- Polynomial approx in range 0.5 to 1 --- */
static const float c[] = {
-1.29479677, 5.11769018, -8.42295281, 8.10557963, -3.50567360 };
x = lc3_frexpf(x, &e);
y = ( c[0]) * x;
y = (y + c[1]) * x;
y = (y + c[2]) * x;
y = (y + c[3]) * x;
y = (y + c[4]);
/* --- Add log2f(2^e) and return --- */
return e + y;
}
/**
* Fast log10(x) approximation
* x Operand, greater than 0
* return log10(x) approximation (max absolute error ~ 1e-4)
*/
static inline float lc3_log10f(float x)
{
return log10f(2) * lc3_log2f(x);
}
/**
* Fast `10 * log10(x)` (or dB) approximation in fixed Q16
* x Operand, in range 2^-63 to 2^63 (1e-19 to 1e19)
* return 10 * log10(x) in fixed Q16 (-190 to 192 dB)
*
* - The 0 value is accepted and return the minimum value ~ -191dB
* - This function assumed that float 32 bits is coded IEEE 754
*/
static inline int32_t lc3_db_q16(float x)
{
/* --- Table in Q15 --- */
static const uint16_t t[][2] = {
/* [n][0] = 10 * log10(2) * log2(1 + n/32), with n = [0..15] */
/* [n][1] = [n+1][0] - [n][0] (while defining [16][0]) */
{ 0, 4379 }, { 4379, 4248 }, { 8627, 4125 }, { 12753, 4009 },
{ 16762, 3899 }, { 20661, 3795 }, { 24456, 3697 }, { 28153, 3603 },
{ 31755, 3514 }, { 35269, 3429 }, { 38699, 3349 }, { 42047, 3272 },
{ 45319, 3198 }, { 48517, 3128 }, { 51645, 3061 }, { 54705, 2996 },
/* [n][0] = 10 * log10(2) * log2(1 + n/32) - 10 * log10(2) / 2, */
/* with n = [16..31] */
/* [n][1] = [n+1][0] - [n][0] (while defining [32][0]) */
{ 8381, 2934 }, { 11315, 2875 }, { 14190, 2818 }, { 17008, 2763 },
{ 19772, 2711 }, { 22482, 2660 }, { 25142, 2611 }, { 27754, 2564 },
{ 30318, 2519 }, { 32837, 2475 }, { 35312, 2433 }, { 37744, 2392 },
{ 40136, 2352 }, { 42489, 2314 }, { 44803, 2277 }, { 47080, 2241 },
};
/* --- Approximation ---
*
* 10 * log10(x^2) = 10 * log10(2) * log2(x^2)
*
* And log2(x^2) = 2 * log2( (1 + m) * 2^e )
* = 2 * (e + log2(1 + m)) , with m in range [0..1]
*
* Split the float values in :
* e2 Double value of the exponent (2 * e + k)
* hi High 5 bits of mantissa, for precalculated result `t[hi][0]`
* lo Low 16 bits of mantissa, for linear interpolation `t[hi][1]`
*
* Two cases, from the range of the mantissa :
* 0 to 0.5 `k = 0`, use 1st part of the table
* 0.5 to 1 `k = 1`, use 2nd part of the table */
union { float f; uint32_t u; } x2 = { .f = x*x };
int e2 = (int)(x2.u >> 22) - 2*127;
int hi = (x2.u >> 18) & 0x1f;
int lo = (x2.u >> 2) & 0xffff;
return e2 * 49321 + t[hi][0] + ((t[hi][1] * lo) >> 16);
}
#endif /* __LC3_FASTMATH_H */