blob: 1b812f5370a98bc28d74590aded1df90189b8672 [file] [log] [blame]
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"math"
"reflect"
"sort"
"strings"
)
// TODO: Can we leave the interface for a reporter here in the cmp package
// and somehow extract the implementation of defaultReporter into cmp/report?
type defaultReporter struct {
Option
diffs []string // List of differences, possibly truncated
ndiffs int // Total number of differences
nbytes int // Number of bytes in diffs
nlines int // Number of lines in diffs
}
var _ reporter = (*defaultReporter)(nil)
func (r *defaultReporter) Report(x, y reflect.Value, eq bool, p Path) {
// TODO: Is there a way to nicely print added/modified/removed elements
// from a slice? This will most certainly require support from the
// equality logic, but what would be the right API for this?
//
// The current API is equivalent to a Hamming distance for measuring the
// difference between two sequences of symbols. That is, the only operation
// we can represent is substitution. The new API would need to handle a
// Levenshtein distance, such that insertions, deletions, and substitutions
// are permitted. Furthermore, this will require an algorithm for computing
// the edit distance. Unfortunately, the time complexity for a minimal
// edit distance algorithm is not much better than O(n^2).
// There are approximations for the algorithm that can run much faster.
// See literature on computing Levenshtein distance.
//
// Passing in a pair of x and y is actually good for representing insertion
// and deletion by the fact that x or y may be an invalid value. However,
// we may need to pass in two paths px and py, to indicate the paths
// relative to x and y. Alternative, since we only perform the Levenshtein
// distance on slices, maybe we alter the SliceIndex type to record
// two different indexes.
// TODO: Perhaps we should coalesce differences on primitive kinds
// together if the number of differences exceeds some ratio.
// For example, comparing two SHA256s leads to many byte differences.
if eq {
// TODO: Maybe print some equal results for context?
return // Ignore equal results
}
const maxBytes = 4096
const maxLines = 256
r.ndiffs++
if r.nbytes < maxBytes && r.nlines < maxLines {
sx := prettyPrint(x, true)
sy := prettyPrint(y, true)
if sx == sy {
// Use of Stringer is not helpful, so rely on more exact formatting.
sx = prettyPrint(x, false)
sy = prettyPrint(y, false)
}
s := fmt.Sprintf("%#v:\n\t-: %s\n\t+: %s\n", p, sx, sy)
r.diffs = append(r.diffs, s)
r.nbytes += len(s)
r.nlines += strings.Count(s, "\n")
}
}
func (r *defaultReporter) String() string {
s := strings.Join(r.diffs, "")
if r.ndiffs == len(r.diffs) {
return s
}
return fmt.Sprintf("%s... %d more differences ...", s, len(r.diffs)-r.ndiffs)
}
var stringerIface = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
func prettyPrint(v reflect.Value, useStringer bool) string {
return formatAny(v, formatConfig{useStringer, true, true, true}, nil)
}
type formatConfig struct {
useStringer bool // Should the String method be used if available?
printType bool // Should we print the type before the value?
followPointers bool // Should we recursively follow pointers?
realPointers bool // Should we print the real address of pointers?
}
// formatAny prints the value v in a pretty formatted manner.
// This is similar to fmt.Sprintf("%+v", v) except this:
// * Prints the type unless it can be elided.
// * Avoids printing struct fields that are zero.
// * Prints a nil-slice as being nil, not empty.
// * Prints map entries in deterministic order.
func formatAny(v reflect.Value, conf formatConfig, visited map[uintptr]bool) string {
// TODO: Should this be a multi-line printout in certain situations?
if !v.IsValid() {
return "<non-existent>"
}
if conf.useStringer && v.Type().Implements(stringerIface) {
if v.Kind() == reflect.Ptr && v.IsNil() {
return "<nil>"
}
return fmt.Sprintf("%q", v.Interface().(fmt.Stringer).String())
}
switch v.Kind() {
case reflect.Bool:
return fmt.Sprint(v.Bool())
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return fmt.Sprint(v.Int())
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if v.Type().PkgPath() == "" || v.Kind() == reflect.Uintptr {
return formatHex(v.Uint()) // Unnamed uints are usually bytes or words
}
return fmt.Sprint(v.Uint()) // Named uints are usually enumerations
case reflect.Float32, reflect.Float64:
return fmt.Sprint(v.Float())
case reflect.Complex64, reflect.Complex128:
return fmt.Sprint(v.Complex())
case reflect.String:
return fmt.Sprintf("%q", v)
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return formatPointer(v, conf)
case reflect.Ptr:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("(%v)(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] || !conf.followPointers {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
return "&" + formatAny(v.Elem(), conf, visited)
case reflect.Interface:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
return formatAny(v.Elem(), conf, visited)
case reflect.Slice:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
fallthrough
case reflect.Array:
var ss []string
subConf := conf
subConf.printType = v.Type().Elem().Kind() == reflect.Interface
for i := 0; i < v.Len(); i++ {
s := formatAny(v.Index(i), subConf, visited)
ss = append(ss, s)
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Map:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
var ss []string
subConf := conf
subConf.printType = v.Type().Elem().Kind() == reflect.Interface
for _, k := range sortKeys(v.MapKeys()) {
sk := formatAny(k, formatConfig{realPointers: conf.realPointers}, visited)
sv := formatAny(v.MapIndex(k), subConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", sk, sv))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Struct:
var ss []string
subConf := conf
subConf.printType = true
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if isZero(vv) {
continue // Elide zero value fields
}
name := v.Type().Field(i).Name
subConf.useStringer = conf.useStringer && isExported(name)
s := formatAny(vv, subConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", name, s))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func formatPointer(v reflect.Value, conf formatConfig) string {
p := v.Pointer()
if !conf.realPointers {
p = 0 // For deterministic printing purposes
}
s := formatHex(uint64(p))
if conf.printType {
return fmt.Sprintf("(%v)(%s)", v.Type(), s)
}
return s
}
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}
// insertPointer insert p into m, allocating m if necessary.
func insertPointer(m map[uintptr]bool, p uintptr) map[uintptr]bool {
if m == nil {
m = make(map[uintptr]bool)
}
m[p] = true
return m
}
// isZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func isZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Complex64, reflect.Complex128:
return v.Complex() == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !isZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !isZero(v.Field(i)) {
return false
}
}
return true
}
return false
}
// isLess is a generic function for sorting arbitrary map keys.
// The inputs must be of the same type and must be comparable.
func isLess(x, y reflect.Value) bool {
switch x.Type().Kind() {
case reflect.Bool:
return !x.Bool() && y.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return x.Int() < y.Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return x.Uint() < y.Uint()
case reflect.Float32, reflect.Float64:
fx, fy := x.Float(), y.Float()
return fx < fy || math.IsNaN(fx) && !math.IsNaN(fy)
case reflect.Complex64, reflect.Complex128:
cx, cy := x.Complex(), y.Complex()
rx, ix, ry, iy := real(cx), imag(cx), real(cy), imag(cy)
if rx == ry || (math.IsNaN(rx) && math.IsNaN(ry)) {
return ix < iy || math.IsNaN(ix) && !math.IsNaN(iy)
}
return rx < ry || math.IsNaN(rx) && !math.IsNaN(ry)
case reflect.Ptr, reflect.UnsafePointer, reflect.Chan:
return x.Pointer() < y.Pointer()
case reflect.String:
return x.String() < y.String()
case reflect.Array:
for i := 0; i < x.Len(); i++ {
if isLess(x.Index(i), y.Index(i)) {
return true
}
if isLess(y.Index(i), x.Index(i)) {
return false
}
}
return false
case reflect.Struct:
for i := 0; i < x.NumField(); i++ {
if isLess(x.Field(i), y.Field(i)) {
return true
}
if isLess(y.Field(i), x.Field(i)) {
return false
}
}
return false
case reflect.Interface:
vx, vy := x.Elem(), y.Elem()
if !vx.IsValid() || !vy.IsValid() {
return !vx.IsValid() && vy.IsValid()
}
tx, ty := vx.Type(), vy.Type()
if tx == ty {
return isLess(x.Elem(), y.Elem())
}
if tx.Kind() != ty.Kind() {
return vx.Kind() < vy.Kind()
}
if tx.String() != ty.String() {
return tx.String() < ty.String()
}
if tx.PkgPath() != ty.PkgPath() {
return tx.PkgPath() < ty.PkgPath()
}
// This can happen in rare situations, so we fallback to just comparing
// the unique pointer for a reflect.Type. This guarantees deterministic
// ordering within a program, but it is obviously not stable.
return reflect.ValueOf(vx.Type()).Pointer() < reflect.ValueOf(vy.Type()).Pointer()
default:
// Must be Func, Map, or Slice; which are not comparable.
panic(fmt.Sprintf("%T is not comparable", x.Type()))
}
}
// sortKey sorts a list of map keys, deduplicating keys if necessary.
func sortKeys(vs []reflect.Value) []reflect.Value {
if len(vs) == 0 {
return vs
}
// Sort the map keys.
sort.Sort(valueSorter(vs))
// Deduplicate keys (fails for NaNs).
vs2 := vs[:1]
for _, v := range vs[1:] {
if v.Interface() != vs2[len(vs2)-1].Interface() {
vs2 = append(vs2, v)
}
}
return vs2
}
// TODO: Use sort.Slice once Google AppEngine is on Go1.8 or above.
type valueSorter []reflect.Value
func (vs valueSorter) Len() int { return len(vs) }
func (vs valueSorter) Less(i, j int) bool { return isLess(vs[i], vs[j]) }
func (vs valueSorter) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }