| /* |
| * Copyright 2017 Google Inc. All rights reserved. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef FLATBUFFERS_FLEXBUFFERS_H_ |
| #define FLATBUFFERS_FLEXBUFFERS_H_ |
| |
| #include <algorithm> |
| #include <map> |
| // Used to select STL variant. |
| #include "flatbuffers/base.h" |
| // We use the basic binary writing functions from the regular FlatBuffers. |
| #include "flatbuffers/util.h" |
| |
| #ifdef _MSC_VER |
| # include <intrin.h> |
| #endif |
| |
| #if defined(_MSC_VER) |
| # pragma warning(push) |
| # pragma warning(disable : 4127) // C4127: conditional expression is constant |
| #endif |
| |
| namespace flexbuffers { |
| |
| class Reference; |
| class Map; |
| |
| // These are used in the lower 2 bits of a type field to determine the size of |
| // the elements (and or size field) of the item pointed to (e.g. vector). |
| enum BitWidth { |
| BIT_WIDTH_8 = 0, |
| BIT_WIDTH_16 = 1, |
| BIT_WIDTH_32 = 2, |
| BIT_WIDTH_64 = 3, |
| }; |
| |
| // These are used as the upper 6 bits of a type field to indicate the actual |
| // type. |
| enum Type { |
| FBT_NULL = 0, |
| FBT_INT = 1, |
| FBT_UINT = 2, |
| FBT_FLOAT = 3, |
| // Types above stored inline, types below (except FBT_BOOL) store an offset. |
| FBT_KEY = 4, |
| FBT_STRING = 5, |
| FBT_INDIRECT_INT = 6, |
| FBT_INDIRECT_UINT = 7, |
| FBT_INDIRECT_FLOAT = 8, |
| FBT_MAP = 9, |
| FBT_VECTOR = 10, // Untyped. |
| FBT_VECTOR_INT = 11, // Typed any size (stores no type table). |
| FBT_VECTOR_UINT = 12, |
| FBT_VECTOR_FLOAT = 13, |
| FBT_VECTOR_KEY = 14, |
| // DEPRECATED, use FBT_VECTOR or FBT_VECTOR_KEY instead. |
| // Read test.cpp/FlexBuffersDeprecatedTest() for details on why. |
| FBT_VECTOR_STRING_DEPRECATED = 15, |
| FBT_VECTOR_INT2 = 16, // Typed tuple (no type table, no size field). |
| FBT_VECTOR_UINT2 = 17, |
| FBT_VECTOR_FLOAT2 = 18, |
| FBT_VECTOR_INT3 = 19, // Typed triple (no type table, no size field). |
| FBT_VECTOR_UINT3 = 20, |
| FBT_VECTOR_FLOAT3 = 21, |
| FBT_VECTOR_INT4 = 22, // Typed quad (no type table, no size field). |
| FBT_VECTOR_UINT4 = 23, |
| FBT_VECTOR_FLOAT4 = 24, |
| FBT_BLOB = 25, |
| FBT_BOOL = 26, |
| FBT_VECTOR_BOOL = |
| 36, // To Allow the same type of conversion of type to vector type |
| |
| FBT_MAX_TYPE = 37 |
| }; |
| |
| inline bool IsInline(Type t) { return t <= FBT_FLOAT || t == FBT_BOOL; } |
| |
| inline bool IsTypedVectorElementType(Type t) { |
| return (t >= FBT_INT && t <= FBT_STRING) || t == FBT_BOOL; |
| } |
| |
| inline bool IsTypedVector(Type t) { |
| return (t >= FBT_VECTOR_INT && t <= FBT_VECTOR_STRING_DEPRECATED) || |
| t == FBT_VECTOR_BOOL; |
| } |
| |
| inline bool IsFixedTypedVector(Type t) { |
| return t >= FBT_VECTOR_INT2 && t <= FBT_VECTOR_FLOAT4; |
| } |
| |
| inline Type ToTypedVector(Type t, size_t fixed_len = 0) { |
| FLATBUFFERS_ASSERT(IsTypedVectorElementType(t)); |
| switch (fixed_len) { |
| case 0: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT); |
| case 2: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT2); |
| case 3: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT3); |
| case 4: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT4); |
| default: FLATBUFFERS_ASSERT(0); return FBT_NULL; |
| } |
| } |
| |
| inline Type ToTypedVectorElementType(Type t) { |
| FLATBUFFERS_ASSERT(IsTypedVector(t)); |
| return static_cast<Type>(t - FBT_VECTOR_INT + FBT_INT); |
| } |
| |
| inline Type ToFixedTypedVectorElementType(Type t, uint8_t *len) { |
| FLATBUFFERS_ASSERT(IsFixedTypedVector(t)); |
| auto fixed_type = t - FBT_VECTOR_INT2; |
| *len = static_cast<uint8_t>(fixed_type / 3 + |
| 2); // 3 types each, starting from length 2. |
| return static_cast<Type>(fixed_type % 3 + FBT_INT); |
| } |
| |
| // TODO: implement proper support for 8/16bit floats, or decide not to |
| // support them. |
| typedef int16_t half; |
| typedef int8_t quarter; |
| |
| // TODO: can we do this without conditionals using intrinsics or inline asm |
| // on some platforms? Given branch prediction the method below should be |
| // decently quick, but it is the most frequently executed function. |
| // We could do an (unaligned) 64-bit read if we ifdef out the platforms for |
| // which that doesn't work (or where we'd read into un-owned memory). |
| template<typename R, typename T1, typename T2, typename T4, typename T8> |
| R ReadSizedScalar(const uint8_t *data, uint8_t byte_width) { |
| return byte_width < 4 |
| ? (byte_width < 2 |
| ? static_cast<R>(flatbuffers::ReadScalar<T1>(data)) |
| : static_cast<R>(flatbuffers::ReadScalar<T2>(data))) |
| : (byte_width < 8 |
| ? static_cast<R>(flatbuffers::ReadScalar<T4>(data)) |
| : static_cast<R>(flatbuffers::ReadScalar<T8>(data))); |
| } |
| |
| inline int64_t ReadInt64(const uint8_t *data, uint8_t byte_width) { |
| return ReadSizedScalar<int64_t, int8_t, int16_t, int32_t, int64_t>( |
| data, byte_width); |
| } |
| |
| inline uint64_t ReadUInt64(const uint8_t *data, uint8_t byte_width) { |
| // This is the "hottest" function (all offset lookups use this), so worth |
| // optimizing if possible. |
| // TODO: GCC apparently replaces memcpy by a rep movsb, but only if count is a |
| // constant, which here it isn't. Test if memcpy is still faster than |
| // the conditionals in ReadSizedScalar. Can also use inline asm. |
| |
| // clang-format off |
| #if defined(_MSC_VER) && defined(_M_X64) && !defined(_M_ARM64EC) |
| // This is 64-bit Windows only, __movsb does not work on 32-bit Windows. |
| uint64_t u = 0; |
| __movsb(reinterpret_cast<uint8_t *>(&u), |
| reinterpret_cast<const uint8_t *>(data), byte_width); |
| return flatbuffers::EndianScalar(u); |
| #else |
| return ReadSizedScalar<uint64_t, uint8_t, uint16_t, uint32_t, uint64_t>( |
| data, byte_width); |
| #endif |
| // clang-format on |
| } |
| |
| inline double ReadDouble(const uint8_t *data, uint8_t byte_width) { |
| return ReadSizedScalar<double, quarter, half, float, double>(data, |
| byte_width); |
| } |
| |
| inline const uint8_t *Indirect(const uint8_t *offset, uint8_t byte_width) { |
| return offset - ReadUInt64(offset, byte_width); |
| } |
| |
| template<typename T> const uint8_t *Indirect(const uint8_t *offset) { |
| return offset - flatbuffers::ReadScalar<T>(offset); |
| } |
| |
| inline BitWidth WidthU(uint64_t u) { |
| #define FLATBUFFERS_GET_FIELD_BIT_WIDTH(value, width) \ |
| { \ |
| if (!((u) & ~((1ULL << (width)) - 1ULL))) return BIT_WIDTH_##width; \ |
| } |
| FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 8); |
| FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 16); |
| FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 32); |
| #undef FLATBUFFERS_GET_FIELD_BIT_WIDTH |
| return BIT_WIDTH_64; |
| } |
| |
| inline BitWidth WidthI(int64_t i) { |
| auto u = static_cast<uint64_t>(i) << 1; |
| return WidthU(i >= 0 ? u : ~u); |
| } |
| |
| inline BitWidth WidthF(double f) { |
| return static_cast<double>(static_cast<float>(f)) == f ? BIT_WIDTH_32 |
| : BIT_WIDTH_64; |
| } |
| |
| // Base class of all types below. |
| // Points into the data buffer and allows access to one type. |
| class Object { |
| public: |
| Object(const uint8_t *data, uint8_t byte_width) |
| : data_(data), byte_width_(byte_width) {} |
| |
| protected: |
| const uint8_t *data_; |
| uint8_t byte_width_; |
| }; |
| |
| // Object that has a size, obtained either from size prefix, or elsewhere. |
| class Sized : public Object { |
| public: |
| // Size prefix. |
| Sized(const uint8_t *data, uint8_t byte_width) |
| : Object(data, byte_width), size_(read_size()) {} |
| // Manual size. |
| Sized(const uint8_t *data, uint8_t byte_width, size_t sz) |
| : Object(data, byte_width), size_(sz) {} |
| size_t size() const { return size_; } |
| // Access size stored in `byte_width_` bytes before data_ pointer. |
| size_t read_size() const { |
| return static_cast<size_t>(ReadUInt64(data_ - byte_width_, byte_width_)); |
| } |
| |
| protected: |
| size_t size_; |
| }; |
| |
| class String : public Sized { |
| public: |
| // Size prefix. |
| String(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {} |
| // Manual size. |
| String(const uint8_t *data, uint8_t byte_width, size_t sz) |
| : Sized(data, byte_width, sz) {} |
| |
| size_t length() const { return size(); } |
| const char *c_str() const { return reinterpret_cast<const char *>(data_); } |
| std::string str() const { return std::string(c_str(), size()); } |
| |
| static String EmptyString() { |
| static const char *empty_string = ""; |
| return String(reinterpret_cast<const uint8_t *>(empty_string), 1, 0); |
| } |
| bool IsTheEmptyString() const { return data_ == EmptyString().data_; } |
| }; |
| |
| class Blob : public Sized { |
| public: |
| Blob(const uint8_t *data_buf, uint8_t byte_width) |
| : Sized(data_buf, byte_width) {} |
| |
| static Blob EmptyBlob() { |
| static const uint8_t empty_blob[] = { 0 /*len*/ }; |
| return Blob(empty_blob + 1, 1); |
| } |
| bool IsTheEmptyBlob() const { return data_ == EmptyBlob().data_; } |
| const uint8_t *data() const { return data_; } |
| }; |
| |
| class Vector : public Sized { |
| public: |
| Vector(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {} |
| |
| Reference operator[](size_t i) const; |
| |
| static Vector EmptyVector() { |
| static const uint8_t empty_vector[] = { 0 /*len*/ }; |
| return Vector(empty_vector + 1, 1); |
| } |
| bool IsTheEmptyVector() const { return data_ == EmptyVector().data_; } |
| }; |
| |
| class TypedVector : public Sized { |
| public: |
| TypedVector(const uint8_t *data, uint8_t byte_width, Type element_type) |
| : Sized(data, byte_width), type_(element_type) {} |
| |
| Reference operator[](size_t i) const; |
| |
| static TypedVector EmptyTypedVector() { |
| static const uint8_t empty_typed_vector[] = { 0 /*len*/ }; |
| return TypedVector(empty_typed_vector + 1, 1, FBT_INT); |
| } |
| bool IsTheEmptyVector() const { |
| return data_ == TypedVector::EmptyTypedVector().data_; |
| } |
| |
| Type ElementType() { return type_; } |
| |
| friend Reference; |
| |
| private: |
| Type type_; |
| |
| friend Map; |
| }; |
| |
| class FixedTypedVector : public Object { |
| public: |
| FixedTypedVector(const uint8_t *data, uint8_t byte_width, Type element_type, |
| uint8_t len) |
| : Object(data, byte_width), type_(element_type), len_(len) {} |
| |
| Reference operator[](size_t i) const; |
| |
| static FixedTypedVector EmptyFixedTypedVector() { |
| static const uint8_t fixed_empty_vector[] = { 0 /* unused */ }; |
| return FixedTypedVector(fixed_empty_vector, 1, FBT_INT, 0); |
| } |
| bool IsTheEmptyFixedTypedVector() const { |
| return data_ == FixedTypedVector::EmptyFixedTypedVector().data_; |
| } |
| |
| Type ElementType() const { return type_; } |
| uint8_t size() const { return len_; } |
| |
| private: |
| Type type_; |
| uint8_t len_; |
| }; |
| |
| class Map : public Vector { |
| public: |
| Map(const uint8_t *data, uint8_t byte_width) : Vector(data, byte_width) {} |
| |
| Reference operator[](const char *key) const; |
| Reference operator[](const std::string &key) const; |
| |
| Vector Values() const { return Vector(data_, byte_width_); } |
| |
| TypedVector Keys() const { |
| const size_t num_prefixed_fields = 3; |
| auto keys_offset = data_ - byte_width_ * num_prefixed_fields; |
| return TypedVector(Indirect(keys_offset, byte_width_), |
| static_cast<uint8_t>( |
| ReadUInt64(keys_offset + byte_width_, byte_width_)), |
| FBT_KEY); |
| } |
| |
| static Map EmptyMap() { |
| static const uint8_t empty_map[] = { |
| 0 /*keys_len*/, 0 /*keys_offset*/, 1 /*keys_width*/, 0 /*len*/ |
| }; |
| return Map(empty_map + 4, 1); |
| } |
| |
| bool IsTheEmptyMap() const { return data_ == EmptyMap().data_; } |
| }; |
| |
| inline void IndentString(std::string &s, int indent, |
| const char *indent_string) { |
| for (int i = 0; i < indent; i++) s += indent_string; |
| } |
| |
| template<typename T> |
| void AppendToString(std::string &s, T &&v, bool keys_quoted, bool indented, |
| int cur_indent, const char *indent_string) { |
| s += "["; |
| s += indented ? "\n" : " "; |
| for (size_t i = 0; i < v.size(); i++) { |
| if (i) { |
| s += ","; |
| s += indented ? "\n" : " "; |
| } |
| if (indented) IndentString(s, cur_indent, indent_string); |
| v[i].ToString(true, keys_quoted, s, indented, cur_indent, |
| indent_string); |
| } |
| if (indented) { |
| s += "\n"; |
| IndentString(s, cur_indent - 1, indent_string); |
| } else { |
| s += " "; |
| } |
| s += "]"; |
| } |
| |
| template<typename T> |
| void AppendToString(std::string &s, T &&v, bool keys_quoted) { |
| AppendToString(s, v, keys_quoted); |
| } |
| |
| |
| class Reference { |
| public: |
| Reference() |
| : data_(nullptr), parent_width_(0), byte_width_(0), type_(FBT_NULL) {} |
| |
| Reference(const uint8_t *data, uint8_t parent_width, uint8_t byte_width, |
| Type type) |
| : data_(data), |
| parent_width_(parent_width), |
| byte_width_(byte_width), |
| type_(type) {} |
| |
| Reference(const uint8_t *data, uint8_t parent_width, uint8_t packed_type) |
| : data_(data), |
| parent_width_(parent_width), |
| byte_width_(static_cast<uint8_t>(1 << (packed_type & 3))), |
| type_(static_cast<Type>(packed_type >> 2)) {} |
| |
| Type GetType() const { return type_; } |
| |
| bool IsNull() const { return type_ == FBT_NULL; } |
| bool IsBool() const { return type_ == FBT_BOOL; } |
| bool IsInt() const { return type_ == FBT_INT || type_ == FBT_INDIRECT_INT; } |
| bool IsUInt() const { |
| return type_ == FBT_UINT || type_ == FBT_INDIRECT_UINT; |
| } |
| bool IsIntOrUint() const { return IsInt() || IsUInt(); } |
| bool IsFloat() const { |
| return type_ == FBT_FLOAT || type_ == FBT_INDIRECT_FLOAT; |
| } |
| bool IsNumeric() const { return IsIntOrUint() || IsFloat(); } |
| bool IsString() const { return type_ == FBT_STRING; } |
| bool IsKey() const { return type_ == FBT_KEY; } |
| bool IsVector() const { return type_ == FBT_VECTOR || type_ == FBT_MAP; } |
| bool IsUntypedVector() const { return type_ == FBT_VECTOR; } |
| bool IsTypedVector() const { return flexbuffers::IsTypedVector(type_); } |
| bool IsFixedTypedVector() const { |
| return flexbuffers::IsFixedTypedVector(type_); |
| } |
| bool IsAnyVector() const { |
| return (IsTypedVector() || IsFixedTypedVector() || IsVector()); |
| } |
| bool IsMap() const { return type_ == FBT_MAP; } |
| bool IsBlob() const { return type_ == FBT_BLOB; } |
| bool AsBool() const { |
| return (type_ == FBT_BOOL ? ReadUInt64(data_, parent_width_) |
| : AsUInt64()) != 0; |
| } |
| |
| // Reads any type as a int64_t. Never fails, does most sensible conversion. |
| // Truncates floats, strings are attempted to be parsed for a number, |
| // vectors/maps return their size. Returns 0 if all else fails. |
| int64_t AsInt64() const { |
| if (type_ == FBT_INT) { |
| // A fast path for the common case. |
| return ReadInt64(data_, parent_width_); |
| } else |
| switch (type_) { |
| case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_); |
| case FBT_UINT: return ReadUInt64(data_, parent_width_); |
| case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_); |
| case FBT_FLOAT: |
| return static_cast<int64_t>(ReadDouble(data_, parent_width_)); |
| case FBT_INDIRECT_FLOAT: |
| return static_cast<int64_t>(ReadDouble(Indirect(), byte_width_)); |
| case FBT_NULL: return 0; |
| case FBT_STRING: return flatbuffers::StringToInt(AsString().c_str()); |
| case FBT_VECTOR: return static_cast<int64_t>(AsVector().size()); |
| case FBT_BOOL: return ReadInt64(data_, parent_width_); |
| default: |
| // Convert other things to int. |
| return 0; |
| } |
| } |
| |
| // TODO: could specialize these to not use AsInt64() if that saves |
| // extension ops in generated code, and use a faster op than ReadInt64. |
| int32_t AsInt32() const { return static_cast<int32_t>(AsInt64()); } |
| int16_t AsInt16() const { return static_cast<int16_t>(AsInt64()); } |
| int8_t AsInt8() const { return static_cast<int8_t>(AsInt64()); } |
| |
| uint64_t AsUInt64() const { |
| if (type_ == FBT_UINT) { |
| // A fast path for the common case. |
| return ReadUInt64(data_, parent_width_); |
| } else |
| switch (type_) { |
| case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_); |
| case FBT_INT: return ReadInt64(data_, parent_width_); |
| case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_); |
| case FBT_FLOAT: |
| return static_cast<uint64_t>(ReadDouble(data_, parent_width_)); |
| case FBT_INDIRECT_FLOAT: |
| return static_cast<uint64_t>(ReadDouble(Indirect(), byte_width_)); |
| case FBT_NULL: return 0; |
| case FBT_STRING: return flatbuffers::StringToUInt(AsString().c_str()); |
| case FBT_VECTOR: return static_cast<uint64_t>(AsVector().size()); |
| case FBT_BOOL: return ReadUInt64(data_, parent_width_); |
| default: |
| // Convert other things to uint. |
| return 0; |
| } |
| } |
| |
| uint32_t AsUInt32() const { return static_cast<uint32_t>(AsUInt64()); } |
| uint16_t AsUInt16() const { return static_cast<uint16_t>(AsUInt64()); } |
| uint8_t AsUInt8() const { return static_cast<uint8_t>(AsUInt64()); } |
| |
| double AsDouble() const { |
| if (type_ == FBT_FLOAT) { |
| // A fast path for the common case. |
| return ReadDouble(data_, parent_width_); |
| } else |
| switch (type_) { |
| case FBT_INDIRECT_FLOAT: return ReadDouble(Indirect(), byte_width_); |
| case FBT_INT: |
| return static_cast<double>(ReadInt64(data_, parent_width_)); |
| case FBT_UINT: |
| return static_cast<double>(ReadUInt64(data_, parent_width_)); |
| case FBT_INDIRECT_INT: |
| return static_cast<double>(ReadInt64(Indirect(), byte_width_)); |
| case FBT_INDIRECT_UINT: |
| return static_cast<double>(ReadUInt64(Indirect(), byte_width_)); |
| case FBT_NULL: return 0.0; |
| case FBT_STRING: { |
| double d; |
| flatbuffers::StringToNumber(AsString().c_str(), &d); |
| return d; |
| } |
| case FBT_VECTOR: return static_cast<double>(AsVector().size()); |
| case FBT_BOOL: |
| return static_cast<double>(ReadUInt64(data_, parent_width_)); |
| default: |
| // Convert strings and other things to float. |
| return 0; |
| } |
| } |
| |
| float AsFloat() const { return static_cast<float>(AsDouble()); } |
| |
| const char *AsKey() const { |
| if (type_ == FBT_KEY || type_ == FBT_STRING) { |
| return reinterpret_cast<const char *>(Indirect()); |
| } else { |
| return ""; |
| } |
| } |
| |
| // This function returns the empty string if you try to read something that |
| // is not a string or key. |
| String AsString() const { |
| if (type_ == FBT_STRING) { |
| return String(Indirect(), byte_width_); |
| } else if (type_ == FBT_KEY) { |
| auto key = Indirect(); |
| return String(key, byte_width_, |
| strlen(reinterpret_cast<const char *>(key))); |
| } else { |
| return String::EmptyString(); |
| } |
| } |
| |
| // Unlike AsString(), this will convert any type to a std::string. |
| std::string ToString() const { |
| std::string s; |
| ToString(false, false, s); |
| return s; |
| } |
| |
| // Convert any type to a JSON-like string. strings_quoted determines if |
| // string values at the top level receive "" quotes (inside other values |
| // they always do). keys_quoted determines if keys are quoted, at any level. |
| void ToString(bool strings_quoted, bool keys_quoted, std::string &s) const { |
| ToString(strings_quoted, keys_quoted, s, false, 0, ""); |
| } |
| |
| // This version additionally allow you to specify if you want indentation. |
| void ToString(bool strings_quoted, bool keys_quoted, std::string &s, |
| bool indented, int cur_indent, const char *indent_string) const { |
| if (type_ == FBT_STRING) { |
| String str(Indirect(), byte_width_); |
| if (strings_quoted) { |
| flatbuffers::EscapeString(str.c_str(), str.length(), &s, true, false); |
| } else { |
| s.append(str.c_str(), str.length()); |
| } |
| } else if (IsKey()) { |
| auto str = AsKey(); |
| if (keys_quoted) { |
| flatbuffers::EscapeString(str, strlen(str), &s, true, false); |
| } else { |
| s += str; |
| } |
| } else if (IsInt()) { |
| s += flatbuffers::NumToString(AsInt64()); |
| } else if (IsUInt()) { |
| s += flatbuffers::NumToString(AsUInt64()); |
| } else if (IsFloat()) { |
| s += flatbuffers::NumToString(AsDouble()); |
| } else if (IsNull()) { |
| s += "null"; |
| } else if (IsBool()) { |
| s += AsBool() ? "true" : "false"; |
| } else if (IsMap()) { |
| s += "{"; |
| s += indented ? "\n" : " "; |
| auto m = AsMap(); |
| auto keys = m.Keys(); |
| auto vals = m.Values(); |
| for (size_t i = 0; i < keys.size(); i++) { |
| bool kq = keys_quoted; |
| if (!kq) { |
| // FlexBuffers keys may contain arbitrary characters, only allow |
| // unquoted if it looks like an "identifier": |
| const char *p = keys[i].AsKey(); |
| if (!flatbuffers::is_alpha(*p) && *p != '_') { |
| kq = true; |
| } else { |
| while (*++p) { |
| if (!flatbuffers::is_alnum(*p) && *p != '_') { |
| kq = true; |
| break; |
| } |
| } |
| } |
| } |
| if (indented) IndentString(s, cur_indent + 1, indent_string); |
| keys[i].ToString(true, kq, s); |
| s += ": "; |
| vals[i].ToString(true, keys_quoted, s, indented, cur_indent + 1, indent_string); |
| if (i < keys.size() - 1) { |
| s += ","; |
| if (!indented) s += " "; |
| } |
| if (indented) s += "\n"; |
| } |
| if (!indented) s += " "; |
| if (indented) IndentString(s, cur_indent, indent_string); |
| s += "}"; |
| } else if (IsVector()) { |
| AppendToString<Vector>(s, AsVector(), keys_quoted, indented, |
| cur_indent + 1, indent_string); |
| } else if (IsTypedVector()) { |
| AppendToString<TypedVector>(s, AsTypedVector(), keys_quoted, indented, |
| cur_indent + 1, indent_string); |
| } else if (IsFixedTypedVector()) { |
| AppendToString<FixedTypedVector>(s, AsFixedTypedVector(), keys_quoted, |
| indented, cur_indent + 1, indent_string); |
| } else if (IsBlob()) { |
| auto blob = AsBlob(); |
| flatbuffers::EscapeString(reinterpret_cast<const char *>(blob.data()), |
| blob.size(), &s, true, false); |
| } else { |
| s += "(?)"; |
| } |
| } |
| |
| // This function returns the empty blob if you try to read a not-blob. |
| // Strings can be viewed as blobs too. |
| Blob AsBlob() const { |
| if (type_ == FBT_BLOB || type_ == FBT_STRING) { |
| return Blob(Indirect(), byte_width_); |
| } else { |
| return Blob::EmptyBlob(); |
| } |
| } |
| |
| // This function returns the empty vector if you try to read a not-vector. |
| // Maps can be viewed as vectors too. |
| Vector AsVector() const { |
| if (type_ == FBT_VECTOR || type_ == FBT_MAP) { |
| return Vector(Indirect(), byte_width_); |
| } else { |
| return Vector::EmptyVector(); |
| } |
| } |
| |
| TypedVector AsTypedVector() const { |
| if (IsTypedVector()) { |
| auto tv = |
| TypedVector(Indirect(), byte_width_, ToTypedVectorElementType(type_)); |
| if (tv.type_ == FBT_STRING) { |
| // These can't be accessed as strings, since we don't know the bit-width |
| // of the size field, see the declaration of |
| // FBT_VECTOR_STRING_DEPRECATED above for details. |
| // We change the type here to be keys, which are a subtype of strings, |
| // and will ignore the size field. This will truncate strings with |
| // embedded nulls. |
| tv.type_ = FBT_KEY; |
| } |
| return tv; |
| } else { |
| return TypedVector::EmptyTypedVector(); |
| } |
| } |
| |
| FixedTypedVector AsFixedTypedVector() const { |
| if (IsFixedTypedVector()) { |
| uint8_t len = 0; |
| auto vtype = ToFixedTypedVectorElementType(type_, &len); |
| return FixedTypedVector(Indirect(), byte_width_, vtype, len); |
| } else { |
| return FixedTypedVector::EmptyFixedTypedVector(); |
| } |
| } |
| |
| Map AsMap() const { |
| if (type_ == FBT_MAP) { |
| return Map(Indirect(), byte_width_); |
| } else { |
| return Map::EmptyMap(); |
| } |
| } |
| |
| template<typename T> T As() const; |
| |
| // Experimental: Mutation functions. |
| // These allow scalars in an already created buffer to be updated in-place. |
| // Since by default scalars are stored in the smallest possible space, |
| // the new value may not fit, in which case these functions return false. |
| // To avoid this, you can construct the values you intend to mutate using |
| // Builder::ForceMinimumBitWidth. |
| bool MutateInt(int64_t i) { |
| if (type_ == FBT_INT) { |
| return Mutate(data_, i, parent_width_, WidthI(i)); |
| } else if (type_ == FBT_INDIRECT_INT) { |
| return Mutate(Indirect(), i, byte_width_, WidthI(i)); |
| } else if (type_ == FBT_UINT) { |
| auto u = static_cast<uint64_t>(i); |
| return Mutate(data_, u, parent_width_, WidthU(u)); |
| } else if (type_ == FBT_INDIRECT_UINT) { |
| auto u = static_cast<uint64_t>(i); |
| return Mutate(Indirect(), u, byte_width_, WidthU(u)); |
| } else { |
| return false; |
| } |
| } |
| |
| bool MutateBool(bool b) { |
| return type_ == FBT_BOOL && Mutate(data_, b, parent_width_, BIT_WIDTH_8); |
| } |
| |
| bool MutateUInt(uint64_t u) { |
| if (type_ == FBT_UINT) { |
| return Mutate(data_, u, parent_width_, WidthU(u)); |
| } else if (type_ == FBT_INDIRECT_UINT) { |
| return Mutate(Indirect(), u, byte_width_, WidthU(u)); |
| } else if (type_ == FBT_INT) { |
| auto i = static_cast<int64_t>(u); |
| return Mutate(data_, i, parent_width_, WidthI(i)); |
| } else if (type_ == FBT_INDIRECT_INT) { |
| auto i = static_cast<int64_t>(u); |
| return Mutate(Indirect(), i, byte_width_, WidthI(i)); |
| } else { |
| return false; |
| } |
| } |
| |
| bool MutateFloat(float f) { |
| if (type_ == FBT_FLOAT) { |
| return MutateF(data_, f, parent_width_, BIT_WIDTH_32); |
| } else if (type_ == FBT_INDIRECT_FLOAT) { |
| return MutateF(Indirect(), f, byte_width_, BIT_WIDTH_32); |
| } else { |
| return false; |
| } |
| } |
| |
| bool MutateFloat(double d) { |
| if (type_ == FBT_FLOAT) { |
| return MutateF(data_, d, parent_width_, WidthF(d)); |
| } else if (type_ == FBT_INDIRECT_FLOAT) { |
| return MutateF(Indirect(), d, byte_width_, WidthF(d)); |
| } else { |
| return false; |
| } |
| } |
| |
| bool MutateString(const char *str, size_t len) { |
| auto s = AsString(); |
| if (s.IsTheEmptyString()) return false; |
| // This is very strict, could allow shorter strings, but that creates |
| // garbage. |
| if (s.length() != len) return false; |
| memcpy(const_cast<char *>(s.c_str()), str, len); |
| return true; |
| } |
| bool MutateString(const char *str) { return MutateString(str, strlen(str)); } |
| bool MutateString(const std::string &str) { |
| return MutateString(str.data(), str.length()); |
| } |
| |
| private: |
| const uint8_t *Indirect() const { |
| return flexbuffers::Indirect(data_, parent_width_); |
| } |
| |
| template<typename T> |
| bool Mutate(const uint8_t *dest, T t, size_t byte_width, |
| BitWidth value_width) { |
| auto fits = static_cast<size_t>(static_cast<size_t>(1U) << value_width) <= |
| byte_width; |
| if (fits) { |
| t = flatbuffers::EndianScalar(t); |
| memcpy(const_cast<uint8_t *>(dest), &t, byte_width); |
| } |
| return fits; |
| } |
| |
| template<typename T> |
| bool MutateF(const uint8_t *dest, T t, size_t byte_width, |
| BitWidth value_width) { |
| if (byte_width == sizeof(double)) |
| return Mutate(dest, static_cast<double>(t), byte_width, value_width); |
| if (byte_width == sizeof(float)) |
| return Mutate(dest, static_cast<float>(t), byte_width, value_width); |
| FLATBUFFERS_ASSERT(false); |
| return false; |
| } |
| |
| friend class Verifier; |
| |
| const uint8_t *data_; |
| uint8_t parent_width_; |
| uint8_t byte_width_; |
| Type type_; |
| }; |
| |
| // Template specialization for As(). |
| template<> inline bool Reference::As<bool>() const { return AsBool(); } |
| |
| template<> inline int8_t Reference::As<int8_t>() const { return AsInt8(); } |
| template<> inline int16_t Reference::As<int16_t>() const { return AsInt16(); } |
| template<> inline int32_t Reference::As<int32_t>() const { return AsInt32(); } |
| template<> inline int64_t Reference::As<int64_t>() const { return AsInt64(); } |
| |
| template<> inline uint8_t Reference::As<uint8_t>() const { return AsUInt8(); } |
| template<> inline uint16_t Reference::As<uint16_t>() const { |
| return AsUInt16(); |
| } |
| template<> inline uint32_t Reference::As<uint32_t>() const { |
| return AsUInt32(); |
| } |
| template<> inline uint64_t Reference::As<uint64_t>() const { |
| return AsUInt64(); |
| } |
| |
| template<> inline double Reference::As<double>() const { return AsDouble(); } |
| template<> inline float Reference::As<float>() const { return AsFloat(); } |
| |
| template<> inline String Reference::As<String>() const { return AsString(); } |
| template<> inline std::string Reference::As<std::string>() const { |
| return AsString().str(); |
| } |
| |
| template<> inline Blob Reference::As<Blob>() const { return AsBlob(); } |
| template<> inline Vector Reference::As<Vector>() const { return AsVector(); } |
| template<> inline TypedVector Reference::As<TypedVector>() const { |
| return AsTypedVector(); |
| } |
| template<> inline FixedTypedVector Reference::As<FixedTypedVector>() const { |
| return AsFixedTypedVector(); |
| } |
| template<> inline Map Reference::As<Map>() const { return AsMap(); } |
| |
| inline uint8_t PackedType(BitWidth bit_width, Type type) { |
| return static_cast<uint8_t>(bit_width | (type << 2)); |
| } |
| |
| inline uint8_t NullPackedType() { return PackedType(BIT_WIDTH_8, FBT_NULL); } |
| |
| // Vector accessors. |
| // Note: if you try to access outside of bounds, you get a Null value back |
| // instead. Normally this would be an assert, but since this is "dynamically |
| // typed" data, you may not want that (someone sends you a 2d vector and you |
| // wanted 3d). |
| // The Null converts seamlessly into a default value for any other type. |
| // TODO(wvo): Could introduce an #ifdef that makes this into an assert? |
| inline Reference Vector::operator[](size_t i) const { |
| auto len = size(); |
| if (i >= len) return Reference(nullptr, 1, NullPackedType()); |
| auto packed_type = (data_ + len * byte_width_)[i]; |
| auto elem = data_ + i * byte_width_; |
| return Reference(elem, byte_width_, packed_type); |
| } |
| |
| inline Reference TypedVector::operator[](size_t i) const { |
| auto len = size(); |
| if (i >= len) return Reference(nullptr, 1, NullPackedType()); |
| auto elem = data_ + i * byte_width_; |
| return Reference(elem, byte_width_, 1, type_); |
| } |
| |
| inline Reference FixedTypedVector::operator[](size_t i) const { |
| if (i >= len_) return Reference(nullptr, 1, NullPackedType()); |
| auto elem = data_ + i * byte_width_; |
| return Reference(elem, byte_width_, 1, type_); |
| } |
| |
| template<typename T> int KeyCompare(const void *key, const void *elem) { |
| auto str_elem = reinterpret_cast<const char *>( |
| Indirect<T>(reinterpret_cast<const uint8_t *>(elem))); |
| auto skey = reinterpret_cast<const char *>(key); |
| return strcmp(skey, str_elem); |
| } |
| |
| inline Reference Map::operator[](const char *key) const { |
| auto keys = Keys(); |
| // We can't pass keys.byte_width_ to the comparison function, so we have |
| // to pick the right one ahead of time. |
| int (*comp)(const void *, const void *) = nullptr; |
| switch (keys.byte_width_) { |
| case 1: comp = KeyCompare<uint8_t>; break; |
| case 2: comp = KeyCompare<uint16_t>; break; |
| case 4: comp = KeyCompare<uint32_t>; break; |
| case 8: comp = KeyCompare<uint64_t>; break; |
| default: FLATBUFFERS_ASSERT(false); return Reference(); |
| } |
| auto res = std::bsearch(key, keys.data_, keys.size(), keys.byte_width_, comp); |
| if (!res) return Reference(nullptr, 1, NullPackedType()); |
| auto i = (reinterpret_cast<uint8_t *>(res) - keys.data_) / keys.byte_width_; |
| return (*static_cast<const Vector *>(this))[i]; |
| } |
| |
| inline Reference Map::operator[](const std::string &key) const { |
| return (*this)[key.c_str()]; |
| } |
| |
| inline Reference GetRoot(const uint8_t *buffer, size_t size) { |
| // See Finish() below for the serialization counterpart of this. |
| // The root starts at the end of the buffer, so we parse backwards from there. |
| auto end = buffer + size; |
| auto byte_width = *--end; |
| auto packed_type = *--end; |
| end -= byte_width; // The root data item. |
| return Reference(end, byte_width, packed_type); |
| } |
| |
| inline Reference GetRoot(const std::vector<uint8_t> &buffer) { |
| return GetRoot(buffer.data(), buffer.size()); |
| } |
| |
| // Flags that configure how the Builder behaves. |
| // The "Share" flags determine if the Builder automatically tries to pool |
| // this type. Pooling can reduce the size of serialized data if there are |
| // multiple maps of the same kind, at the expense of slightly slower |
| // serialization (the cost of lookups) and more memory use (std::set). |
| // By default this is on for keys, but off for strings. |
| // Turn keys off if you have e.g. only one map. |
| // Turn strings on if you expect many non-unique string values. |
| // Additionally, sharing key vectors can save space if you have maps with |
| // identical field populations. |
| enum BuilderFlag { |
| BUILDER_FLAG_NONE = 0, |
| BUILDER_FLAG_SHARE_KEYS = 1, |
| BUILDER_FLAG_SHARE_STRINGS = 2, |
| BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3, |
| BUILDER_FLAG_SHARE_KEY_VECTORS = 4, |
| BUILDER_FLAG_SHARE_ALL = 7, |
| }; |
| |
| class Builder FLATBUFFERS_FINAL_CLASS { |
| public: |
| Builder(size_t initial_size = 256, |
| BuilderFlag flags = BUILDER_FLAG_SHARE_KEYS) |
| : buf_(initial_size), |
| finished_(false), |
| has_duplicate_keys_(false), |
| flags_(flags), |
| force_min_bit_width_(BIT_WIDTH_8), |
| key_pool(KeyOffsetCompare(buf_)), |
| string_pool(StringOffsetCompare(buf_)) { |
| buf_.clear(); |
| } |
| |
| #ifdef FLATBUFFERS_DEFAULT_DECLARATION |
| Builder(Builder &&) = default; |
| Builder &operator=(Builder &&) = default; |
| #endif |
| |
| /// @brief Get the serialized buffer (after you call `Finish()`). |
| /// @return Returns a vector owned by this class. |
| const std::vector<uint8_t> &GetBuffer() const { |
| Finished(); |
| return buf_; |
| } |
| |
| // Size of the buffer. Does not include unfinished values. |
| size_t GetSize() const { return buf_.size(); } |
| |
| // Reset all state so we can re-use the buffer. |
| void Clear() { |
| buf_.clear(); |
| stack_.clear(); |
| finished_ = false; |
| // flags_ remains as-is; |
| force_min_bit_width_ = BIT_WIDTH_8; |
| key_pool.clear(); |
| string_pool.clear(); |
| } |
| |
| // All value constructing functions below have two versions: one that |
| // takes a key (for placement inside a map) and one that doesn't (for inside |
| // vectors and elsewhere). |
| |
| void Null() { stack_.push_back(Value()); } |
| void Null(const char *key) { |
| Key(key); |
| Null(); |
| } |
| |
| void Int(int64_t i) { stack_.push_back(Value(i, FBT_INT, WidthI(i))); } |
| void Int(const char *key, int64_t i) { |
| Key(key); |
| Int(i); |
| } |
| |
| void UInt(uint64_t u) { stack_.push_back(Value(u, FBT_UINT, WidthU(u))); } |
| void UInt(const char *key, uint64_t u) { |
| Key(key); |
| UInt(u); |
| } |
| |
| void Float(float f) { stack_.push_back(Value(f)); } |
| void Float(const char *key, float f) { |
| Key(key); |
| Float(f); |
| } |
| |
| void Double(double f) { stack_.push_back(Value(f)); } |
| void Double(const char *key, double d) { |
| Key(key); |
| Double(d); |
| } |
| |
| void Bool(bool b) { stack_.push_back(Value(b)); } |
| void Bool(const char *key, bool b) { |
| Key(key); |
| Bool(b); |
| } |
| |
| void IndirectInt(int64_t i) { PushIndirect(i, FBT_INDIRECT_INT, WidthI(i)); } |
| void IndirectInt(const char *key, int64_t i) { |
| Key(key); |
| IndirectInt(i); |
| } |
| |
| void IndirectUInt(uint64_t u) { |
| PushIndirect(u, FBT_INDIRECT_UINT, WidthU(u)); |
| } |
| void IndirectUInt(const char *key, uint64_t u) { |
| Key(key); |
| IndirectUInt(u); |
| } |
| |
| void IndirectFloat(float f) { |
| PushIndirect(f, FBT_INDIRECT_FLOAT, BIT_WIDTH_32); |
| } |
| void IndirectFloat(const char *key, float f) { |
| Key(key); |
| IndirectFloat(f); |
| } |
| |
| void IndirectDouble(double f) { |
| PushIndirect(f, FBT_INDIRECT_FLOAT, WidthF(f)); |
| } |
| void IndirectDouble(const char *key, double d) { |
| Key(key); |
| IndirectDouble(d); |
| } |
| |
| size_t Key(const char *str, size_t len) { |
| auto sloc = buf_.size(); |
| WriteBytes(str, len + 1); |
| if (flags_ & BUILDER_FLAG_SHARE_KEYS) { |
| auto it = key_pool.find(sloc); |
| if (it != key_pool.end()) { |
| // Already in the buffer. Remove key we just serialized, and use |
| // existing offset instead. |
| buf_.resize(sloc); |
| sloc = *it; |
| } else { |
| key_pool.insert(sloc); |
| } |
| } |
| stack_.push_back(Value(static_cast<uint64_t>(sloc), FBT_KEY, BIT_WIDTH_8)); |
| return sloc; |
| } |
| |
| size_t Key(const char *str) { return Key(str, strlen(str)); } |
| size_t Key(const std::string &str) { return Key(str.c_str(), str.size()); } |
| |
| size_t String(const char *str, size_t len) { |
| auto reset_to = buf_.size(); |
| auto sloc = CreateBlob(str, len, 1, FBT_STRING); |
| if (flags_ & BUILDER_FLAG_SHARE_STRINGS) { |
| StringOffset so(sloc, len); |
| auto it = string_pool.find(so); |
| if (it != string_pool.end()) { |
| // Already in the buffer. Remove string we just serialized, and use |
| // existing offset instead. |
| buf_.resize(reset_to); |
| sloc = it->first; |
| stack_.back().u_ = sloc; |
| } else { |
| string_pool.insert(so); |
| } |
| } |
| return sloc; |
| } |
| size_t String(const char *str) { return String(str, strlen(str)); } |
| size_t String(const std::string &str) { |
| return String(str.c_str(), str.size()); |
| } |
| void String(const flexbuffers::String &str) { |
| String(str.c_str(), str.length()); |
| } |
| |
| void String(const char *key, const char *str) { |
| Key(key); |
| String(str); |
| } |
| void String(const char *key, const std::string &str) { |
| Key(key); |
| String(str); |
| } |
| void String(const char *key, const flexbuffers::String &str) { |
| Key(key); |
| String(str); |
| } |
| |
| size_t Blob(const void *data, size_t len) { |
| return CreateBlob(data, len, 0, FBT_BLOB); |
| } |
| size_t Blob(const std::vector<uint8_t> &v) { |
| return CreateBlob(v.data(), v.size(), 0, FBT_BLOB); |
| } |
| |
| void Blob(const char *key, const void *data, size_t len) { |
| Key(key); |
| Blob(data, len); |
| } |
| void Blob(const char *key, const std::vector<uint8_t> &v) { |
| Key(key); |
| Blob(v); |
| } |
| |
| // TODO(wvo): support all the FlexBuffer types (like flexbuffers::String), |
| // e.g. Vector etc. Also in overloaded versions. |
| // Also some FlatBuffers types? |
| |
| size_t StartVector() { return stack_.size(); } |
| size_t StartVector(const char *key) { |
| Key(key); |
| return stack_.size(); |
| } |
| size_t StartMap() { return stack_.size(); } |
| size_t StartMap(const char *key) { |
| Key(key); |
| return stack_.size(); |
| } |
| |
| // TODO(wvo): allow this to specify an alignment greater than the natural |
| // alignment. |
| size_t EndVector(size_t start, bool typed, bool fixed) { |
| auto vec = CreateVector(start, stack_.size() - start, 1, typed, fixed); |
| // Remove temp elements and return vector. |
| stack_.resize(start); |
| stack_.push_back(vec); |
| return static_cast<size_t>(vec.u_); |
| } |
| |
| size_t EndMap(size_t start) { |
| // We should have interleaved keys and values on the stack. |
| auto len = MapElementCount(start); |
| // Make sure keys are all strings: |
| for (auto key = start; key < stack_.size(); key += 2) { |
| FLATBUFFERS_ASSERT(stack_[key].type_ == FBT_KEY); |
| } |
| // Now sort values, so later we can do a binary search lookup. |
| // We want to sort 2 array elements at a time. |
| struct TwoValue { |
| Value key; |
| Value val; |
| }; |
| // TODO(wvo): strict aliasing? |
| // TODO(wvo): allow the caller to indicate the data is already sorted |
| // for maximum efficiency? With an assert to check sortedness to make sure |
| // we're not breaking binary search. |
| // Or, we can track if the map is sorted as keys are added which would be |
| // be quite cheap (cheaper than checking it here), so we can skip this |
| // step automatically when appliccable, and encourage people to write in |
| // sorted fashion. |
| // std::sort is typically already a lot faster on sorted data though. |
| auto dict = reinterpret_cast<TwoValue *>(stack_.data() + start); |
| std::sort( |
| dict, dict + len, [&](const TwoValue &a, const TwoValue &b) -> bool { |
| auto as = reinterpret_cast<const char *>(buf_.data() + a.key.u_); |
| auto bs = reinterpret_cast<const char *>(buf_.data() + b.key.u_); |
| auto comp = strcmp(as, bs); |
| // We want to disallow duplicate keys, since this results in a |
| // map where values cannot be found. |
| // But we can't assert here (since we don't want to fail on |
| // random JSON input) or have an error mechanism. |
| // Instead, we set has_duplicate_keys_ in the builder to |
| // signal this. |
| // TODO: Have to check for pointer equality, as some sort |
| // implementation apparently call this function with the same |
| // element?? Why? |
| if (!comp && &a != &b) has_duplicate_keys_ = true; |
| return comp < 0; |
| }); |
| // First create a vector out of all keys. |
| // TODO(wvo): if kBuilderFlagShareKeyVectors is true, see if we can share |
| // the first vector. |
| auto keys = CreateVector(start, len, 2, true, false); |
| auto vec = CreateVector(start + 1, len, 2, false, false, &keys); |
| // Remove temp elements and return map. |
| stack_.resize(start); |
| stack_.push_back(vec); |
| return static_cast<size_t>(vec.u_); |
| } |
| |
| // Call this after EndMap to see if the map had any duplicate keys. |
| // Any map with such keys won't be able to retrieve all values. |
| bool HasDuplicateKeys() const { return has_duplicate_keys_; } |
| |
| template<typename F> size_t Vector(F f) { |
| auto start = StartVector(); |
| f(); |
| return EndVector(start, false, false); |
| } |
| template<typename F, typename T> size_t Vector(F f, T &state) { |
| auto start = StartVector(); |
| f(state); |
| return EndVector(start, false, false); |
| } |
| template<typename F> size_t Vector(const char *key, F f) { |
| auto start = StartVector(key); |
| f(); |
| return EndVector(start, false, false); |
| } |
| template<typename F, typename T> |
| size_t Vector(const char *key, F f, T &state) { |
| auto start = StartVector(key); |
| f(state); |
| return EndVector(start, false, false); |
| } |
| |
| template<typename T> void Vector(const T *elems, size_t len) { |
| if (flatbuffers::is_scalar<T>::value) { |
| // This path should be a lot quicker and use less space. |
| ScalarVector(elems, len, false); |
| } else { |
| auto start = StartVector(); |
| for (size_t i = 0; i < len; i++) Add(elems[i]); |
| EndVector(start, false, false); |
| } |
| } |
| template<typename T> |
| void Vector(const char *key, const T *elems, size_t len) { |
| Key(key); |
| Vector(elems, len); |
| } |
| template<typename T> void Vector(const std::vector<T> &vec) { |
| Vector(vec.data(), vec.size()); |
| } |
| |
| template<typename F> size_t TypedVector(F f) { |
| auto start = StartVector(); |
| f(); |
| return EndVector(start, true, false); |
| } |
| template<typename F, typename T> size_t TypedVector(F f, T &state) { |
| auto start = StartVector(); |
| f(state); |
| return EndVector(start, true, false); |
| } |
| template<typename F> size_t TypedVector(const char *key, F f) { |
| auto start = StartVector(key); |
| f(); |
| return EndVector(start, true, false); |
| } |
| template<typename F, typename T> |
| size_t TypedVector(const char *key, F f, T &state) { |
| auto start = StartVector(key); |
| f(state); |
| return EndVector(start, true, false); |
| } |
| |
| template<typename T> size_t FixedTypedVector(const T *elems, size_t len) { |
| // We only support a few fixed vector lengths. Anything bigger use a |
| // regular typed vector. |
| FLATBUFFERS_ASSERT(len >= 2 && len <= 4); |
| // And only scalar values. |
| static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types"); |
| return ScalarVector(elems, len, true); |
| } |
| |
| template<typename T> |
| size_t FixedTypedVector(const char *key, const T *elems, size_t len) { |
| Key(key); |
| return FixedTypedVector(elems, len); |
| } |
| |
| template<typename F> size_t Map(F f) { |
| auto start = StartMap(); |
| f(); |
| return EndMap(start); |
| } |
| template<typename F, typename T> size_t Map(F f, T &state) { |
| auto start = StartMap(); |
| f(state); |
| return EndMap(start); |
| } |
| template<typename F> size_t Map(const char *key, F f) { |
| auto start = StartMap(key); |
| f(); |
| return EndMap(start); |
| } |
| template<typename F, typename T> size_t Map(const char *key, F f, T &state) { |
| auto start = StartMap(key); |
| f(state); |
| return EndMap(start); |
| } |
| template<typename T> void Map(const std::map<std::string, T> &map) { |
| auto start = StartMap(); |
| for (auto it = map.begin(); it != map.end(); ++it) |
| Add(it->first.c_str(), it->second); |
| EndMap(start); |
| } |
| |
| size_t MapElementCount(size_t start) { |
| // Make sure it is an even number: |
| auto len = stack_.size() - start; |
| FLATBUFFERS_ASSERT(!(len & 1)); |
| len /= 2; |
| return len; |
| } |
| |
| // If you wish to share a value explicitly (a value not shared automatically |
| // through one of the BUILDER_FLAG_SHARE_* flags) you can do so with these |
| // functions. Or if you wish to turn those flags off for performance reasons |
| // and still do some explicit sharing. For example: |
| // builder.IndirectDouble(M_PI); |
| // auto id = builder.LastValue(); // Remember where we stored it. |
| // .. more code goes here .. |
| // builder.ReuseValue(id); // Refers to same double by offset. |
| // LastValue works regardless of whether the value has a key or not. |
| // Works on any data type. |
| struct Value; |
| Value LastValue() { return stack_.back(); } |
| void ReuseValue(Value v) { stack_.push_back(v); } |
| void ReuseValue(const char *key, Value v) { |
| Key(key); |
| ReuseValue(v); |
| } |
| |
| // Undo the last element serialized. Call once for a value and once for a |
| // key. |
| void Undo() { |
| stack_.pop_back(); |
| } |
| |
| // Overloaded Add that tries to call the correct function above. |
| void Add(int8_t i) { Int(i); } |
| void Add(int16_t i) { Int(i); } |
| void Add(int32_t i) { Int(i); } |
| void Add(int64_t i) { Int(i); } |
| void Add(uint8_t u) { UInt(u); } |
| void Add(uint16_t u) { UInt(u); } |
| void Add(uint32_t u) { UInt(u); } |
| void Add(uint64_t u) { UInt(u); } |
| void Add(float f) { Float(f); } |
| void Add(double d) { Double(d); } |
| void Add(bool b) { Bool(b); } |
| void Add(const char *str) { String(str); } |
| void Add(const std::string &str) { String(str); } |
| void Add(const flexbuffers::String &str) { String(str); } |
| |
| template<typename T> void Add(const std::vector<T> &vec) { Vector(vec); } |
| |
| template<typename T> void Add(const char *key, const T &t) { |
| Key(key); |
| Add(t); |
| } |
| |
| template<typename T> void Add(const std::map<std::string, T> &map) { |
| Map(map); |
| } |
| |
| template<typename T> void operator+=(const T &t) { Add(t); } |
| |
| // This function is useful in combination with the Mutate* functions above. |
| // It forces elements of vectors and maps to have a minimum size, such that |
| // they can later be updated without failing. |
| // Call with no arguments to reset. |
| void ForceMinimumBitWidth(BitWidth bw = BIT_WIDTH_8) { |
| force_min_bit_width_ = bw; |
| } |
| |
| void Finish() { |
| // If you hit this assert, you likely have objects that were never included |
| // in a parent. You need to have exactly one root to finish a buffer. |
| // Check your Start/End calls are matched, and all objects are inside |
| // some other object. |
| FLATBUFFERS_ASSERT(stack_.size() == 1); |
| |
| // Write root value. |
| auto byte_width = Align(stack_[0].ElemWidth(buf_.size(), 0)); |
| WriteAny(stack_[0], byte_width); |
| // Write root type. |
| Write(stack_[0].StoredPackedType(), 1); |
| // Write root size. Normally determined by parent, but root has no parent :) |
| Write(byte_width, 1); |
| |
| finished_ = true; |
| } |
| |
| private: |
| void Finished() const { |
| // If you get this assert, you're attempting to get access a buffer |
| // which hasn't been finished yet. Be sure to call |
| // Builder::Finish with your root object. |
| FLATBUFFERS_ASSERT(finished_); |
| } |
| |
| // Align to prepare for writing a scalar with a certain size. |
| uint8_t Align(BitWidth alignment) { |
| auto byte_width = 1U << alignment; |
| buf_.insert(buf_.end(), flatbuffers::PaddingBytes(buf_.size(), byte_width), |
| 0); |
| return static_cast<uint8_t>(byte_width); |
| } |
| |
| void WriteBytes(const void *val, size_t size) { |
| buf_.insert(buf_.end(), reinterpret_cast<const uint8_t *>(val), |
| reinterpret_cast<const uint8_t *>(val) + size); |
| } |
| |
| template<typename T> void Write(T val, size_t byte_width) { |
| FLATBUFFERS_ASSERT(sizeof(T) >= byte_width); |
| val = flatbuffers::EndianScalar(val); |
| WriteBytes(&val, byte_width); |
| } |
| |
| void WriteDouble(double f, uint8_t byte_width) { |
| switch (byte_width) { |
| case 8: Write(f, byte_width); break; |
| case 4: Write(static_cast<float>(f), byte_width); break; |
| // case 2: Write(static_cast<half>(f), byte_width); break; |
| // case 1: Write(static_cast<quarter>(f), byte_width); break; |
| default: FLATBUFFERS_ASSERT(0); |
| } |
| } |
| |
| void WriteOffset(uint64_t o, uint8_t byte_width) { |
| auto reloff = buf_.size() - o; |
| FLATBUFFERS_ASSERT(byte_width == 8 || reloff < 1ULL << (byte_width * 8)); |
| Write(reloff, byte_width); |
| } |
| |
| template<typename T> void PushIndirect(T val, Type type, BitWidth bit_width) { |
| auto byte_width = Align(bit_width); |
| auto iloc = buf_.size(); |
| Write(val, byte_width); |
| stack_.push_back(Value(static_cast<uint64_t>(iloc), type, bit_width)); |
| } |
| |
| static BitWidth WidthB(size_t byte_width) { |
| switch (byte_width) { |
| case 1: return BIT_WIDTH_8; |
| case 2: return BIT_WIDTH_16; |
| case 4: return BIT_WIDTH_32; |
| case 8: return BIT_WIDTH_64; |
| default: FLATBUFFERS_ASSERT(false); return BIT_WIDTH_64; |
| } |
| } |
| |
| template<typename T> static Type GetScalarType() { |
| static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types"); |
| return flatbuffers::is_floating_point<T>::value ? FBT_FLOAT |
| : flatbuffers::is_same<T, bool>::value |
| ? FBT_BOOL |
| : (flatbuffers::is_unsigned<T>::value ? FBT_UINT : FBT_INT); |
| } |
| |
| public: |
| // This was really intended to be private, except for LastValue/ReuseValue. |
| struct Value { |
| union { |
| int64_t i_; |
| uint64_t u_; |
| double f_; |
| }; |
| |
| Type type_; |
| |
| // For scalars: of itself, for vector: of its elements, for string: length. |
| BitWidth min_bit_width_; |
| |
| Value() : i_(0), type_(FBT_NULL), min_bit_width_(BIT_WIDTH_8) {} |
| |
| Value(bool b) |
| : u_(static_cast<uint64_t>(b)), |
| type_(FBT_BOOL), |
| min_bit_width_(BIT_WIDTH_8) {} |
| |
| Value(int64_t i, Type t, BitWidth bw) |
| : i_(i), type_(t), min_bit_width_(bw) {} |
| Value(uint64_t u, Type t, BitWidth bw) |
| : u_(u), type_(t), min_bit_width_(bw) {} |
| |
| Value(float f) |
| : f_(static_cast<double>(f)), |
| type_(FBT_FLOAT), |
| min_bit_width_(BIT_WIDTH_32) {} |
| Value(double f) : f_(f), type_(FBT_FLOAT), min_bit_width_(WidthF(f)) {} |
| |
| uint8_t StoredPackedType(BitWidth parent_bit_width_ = BIT_WIDTH_8) const { |
| return PackedType(StoredWidth(parent_bit_width_), type_); |
| } |
| |
| BitWidth ElemWidth(size_t buf_size, size_t elem_index) const { |
| if (IsInline(type_)) { |
| return min_bit_width_; |
| } else { |
| // We have an absolute offset, but want to store a relative offset |
| // elem_index elements beyond the current buffer end. Since whether |
| // the relative offset fits in a certain byte_width depends on |
| // the size of the elements before it (and their alignment), we have |
| // to test for each size in turn. |
| for (size_t byte_width = 1; |
| byte_width <= sizeof(flatbuffers::largest_scalar_t); |
| byte_width *= 2) { |
| // Where are we going to write this offset? |
| auto offset_loc = buf_size + |
| flatbuffers::PaddingBytes(buf_size, byte_width) + |
| elem_index * byte_width; |
| // Compute relative offset. |
| auto offset = offset_loc - u_; |
| // Does it fit? |
| auto bit_width = WidthU(offset); |
| if (static_cast<size_t>(static_cast<size_t>(1U) << bit_width) == |
| byte_width) |
| return bit_width; |
| } |
| FLATBUFFERS_ASSERT(false); // Must match one of the sizes above. |
| return BIT_WIDTH_64; |
| } |
| } |
| |
| BitWidth StoredWidth(BitWidth parent_bit_width_ = BIT_WIDTH_8) const { |
| if (IsInline(type_)) { |
| return (std::max)(min_bit_width_, parent_bit_width_); |
| } else { |
| return min_bit_width_; |
| } |
| } |
| }; |
| |
| private: |
| void WriteAny(const Value &val, uint8_t byte_width) { |
| switch (val.type_) { |
| case FBT_NULL: |
| case FBT_INT: Write(val.i_, byte_width); break; |
| case FBT_BOOL: |
| case FBT_UINT: Write(val.u_, byte_width); break; |
| case FBT_FLOAT: WriteDouble(val.f_, byte_width); break; |
| default: WriteOffset(val.u_, byte_width); break; |
| } |
| } |
| |
| size_t CreateBlob(const void *data, size_t len, size_t trailing, Type type) { |
| auto bit_width = WidthU(len); |
| auto byte_width = Align(bit_width); |
| Write<uint64_t>(len, byte_width); |
| auto sloc = buf_.size(); |
| WriteBytes(data, len + trailing); |
| stack_.push_back(Value(static_cast<uint64_t>(sloc), type, bit_width)); |
| return sloc; |
| } |
| |
| template<typename T> |
| size_t ScalarVector(const T *elems, size_t len, bool fixed) { |
| auto vector_type = GetScalarType<T>(); |
| auto byte_width = sizeof(T); |
| auto bit_width = WidthB(byte_width); |
| // If you get this assert, you're trying to write a vector with a size |
| // field that is bigger than the scalars you're trying to write (e.g. a |
| // byte vector > 255 elements). For such types, write a "blob" instead. |
| // TODO: instead of asserting, could write vector with larger elements |
| // instead, though that would be wasteful. |
| FLATBUFFERS_ASSERT(WidthU(len) <= bit_width); |
| Align(bit_width); |
| if (!fixed) Write<uint64_t>(len, byte_width); |
| auto vloc = buf_.size(); |
| for (size_t i = 0; i < len; i++) Write(elems[i], byte_width); |
| stack_.push_back(Value(static_cast<uint64_t>(vloc), |
| ToTypedVector(vector_type, fixed ? len : 0), |
| bit_width)); |
| return vloc; |
| } |
| |
| Value CreateVector(size_t start, size_t vec_len, size_t step, bool typed, |
| bool fixed, const Value *keys = nullptr) { |
| FLATBUFFERS_ASSERT( |
| !fixed || |
| typed); // typed=false, fixed=true combination is not supported. |
| // Figure out smallest bit width we can store this vector with. |
| auto bit_width = (std::max)(force_min_bit_width_, WidthU(vec_len)); |
| auto prefix_elems = 1; |
| if (keys) { |
| // If this vector is part of a map, we will pre-fix an offset to the keys |
| // to this vector. |
| bit_width = (std::max)(bit_width, keys->ElemWidth(buf_.size(), 0)); |
| prefix_elems += 2; |
| } |
| Type vector_type = FBT_KEY; |
| // Check bit widths and types for all elements. |
| for (size_t i = start; i < stack_.size(); i += step) { |
| auto elem_width = |
| stack_[i].ElemWidth(buf_.size(), i - start + prefix_elems); |
| bit_width = (std::max)(bit_width, elem_width); |
| if (typed) { |
| if (i == start) { |
| vector_type = stack_[i].type_; |
| } else { |
| // If you get this assert, you are writing a typed vector with |
| // elements that are not all the same type. |
| FLATBUFFERS_ASSERT(vector_type == stack_[i].type_); |
| } |
| } |
| } |
| // If you get this assert, your typed types are not one of: |
| // Int / UInt / Float / Key. |
| FLATBUFFERS_ASSERT(!typed || IsTypedVectorElementType(vector_type)); |
| auto byte_width = Align(bit_width); |
| // Write vector. First the keys width/offset if available, and size. |
| if (keys) { |
| WriteOffset(keys->u_, byte_width); |
| Write<uint64_t>(1ULL << keys->min_bit_width_, byte_width); |
| } |
| if (!fixed) Write<uint64_t>(vec_len, byte_width); |
| // Then the actual data. |
| auto vloc = buf_.size(); |
| for (size_t i = start; i < stack_.size(); i += step) { |
| WriteAny(stack_[i], byte_width); |
| } |
| // Then the types. |
| if (!typed) { |
| for (size_t i = start; i < stack_.size(); i += step) { |
| buf_.push_back(stack_[i].StoredPackedType(bit_width)); |
| } |
| } |
| return Value(static_cast<uint64_t>(vloc), |
| keys ? FBT_MAP |
| : (typed ? ToTypedVector(vector_type, fixed ? vec_len : 0) |
| : FBT_VECTOR), |
| bit_width); |
| } |
| |
| // You shouldn't really be copying instances of this class. |
| Builder(const Builder &); |
| Builder &operator=(const Builder &); |
| |
| std::vector<uint8_t> buf_; |
| std::vector<Value> stack_; |
| |
| bool finished_; |
| bool has_duplicate_keys_; |
| |
| BuilderFlag flags_; |
| |
| BitWidth force_min_bit_width_; |
| |
| struct KeyOffsetCompare { |
| explicit KeyOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {} |
| bool operator()(size_t a, size_t b) const { |
| auto stra = reinterpret_cast<const char *>(buf_->data() + a); |
| auto strb = reinterpret_cast<const char *>(buf_->data() + b); |
| return strcmp(stra, strb) < 0; |
| } |
| const std::vector<uint8_t> *buf_; |
| }; |
| |
| typedef std::pair<size_t, size_t> StringOffset; |
| struct StringOffsetCompare { |
| explicit StringOffsetCompare(const std::vector<uint8_t> &buf) |
| : buf_(&buf) {} |
| bool operator()(const StringOffset &a, const StringOffset &b) const { |
| auto stra = buf_->data() + a.first; |
| auto strb = buf_->data() + b.first; |
| auto cr = memcmp(stra, strb, (std::min)(a.second, b.second) + 1); |
| return cr < 0 || (cr == 0 && a.second < b.second); |
| } |
| const std::vector<uint8_t> *buf_; |
| }; |
| |
| typedef std::set<size_t, KeyOffsetCompare> KeyOffsetMap; |
| typedef std::set<StringOffset, StringOffsetCompare> StringOffsetMap; |
| |
| KeyOffsetMap key_pool; |
| StringOffsetMap string_pool; |
| |
| friend class Verifier; |
| }; |
| |
| // Helper class to verify the integrity of a FlexBuffer |
| class Verifier FLATBUFFERS_FINAL_CLASS { |
| public: |
| Verifier(const uint8_t *buf, size_t buf_len, |
| // Supplying this vector likely results in faster verification |
| // of larger buffers with many shared keys/strings, but |
| // comes at the cost of using additional memory the same size of |
| // the buffer being verified, so it is by default off. |
| std::vector<uint8_t> *reuse_tracker = nullptr, |
| bool _check_alignment = true, size_t max_depth = 64) |
| : buf_(buf), |
| size_(buf_len), |
| depth_(0), |
| max_depth_(max_depth), |
| num_vectors_(0), |
| max_vectors_(buf_len), |
| check_alignment_(_check_alignment), |
| reuse_tracker_(reuse_tracker) { |
| FLATBUFFERS_ASSERT(static_cast<int32_t>(size_) < FLATBUFFERS_MAX_BUFFER_SIZE); |
| if (reuse_tracker_) { |
| reuse_tracker_->clear(); |
| reuse_tracker_->resize(size_, PackedType(BIT_WIDTH_8, FBT_NULL)); |
| } |
| } |
| |
| private: |
| // Central location where any verification failures register. |
| bool Check(bool ok) const { |
| // clang-format off |
| #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE |
| FLATBUFFERS_ASSERT(ok); |
| #endif |
| // clang-format on |
| return ok; |
| } |
| |
| // Verify any range within the buffer. |
| bool VerifyFrom(size_t elem, size_t elem_len) const { |
| return Check(elem_len < size_ && elem <= size_ - elem_len); |
| } |
| bool VerifyBefore(size_t elem, size_t elem_len) const { |
| return Check(elem_len <= elem); |
| } |
| |
| bool VerifyFromPointer(const uint8_t *p, size_t len) { |
| auto o = static_cast<size_t>(p - buf_); |
| return VerifyFrom(o, len); |
| } |
| bool VerifyBeforePointer(const uint8_t *p, size_t len) { |
| auto o = static_cast<size_t>(p - buf_); |
| return VerifyBefore(o, len); |
| } |
| |
| bool VerifyByteWidth(size_t width) { |
| return Check(width == 1 || width == 2 || width == 4 || width == 8); |
| } |
| |
| bool VerifyType(int type) { return Check(type >= 0 && type < FBT_MAX_TYPE); } |
| |
| bool VerifyOffset(uint64_t off, const uint8_t *p) { |
| return Check(off <= static_cast<uint64_t>(size_)) && |
| off <= static_cast<uint64_t>(p - buf_); |
| } |
| |
| bool VerifyAlignment(const uint8_t *p, size_t size) const { |
| auto o = static_cast<size_t>(p - buf_); |
| return Check((o & (size - 1)) == 0 || !check_alignment_); |
| } |
| |
| // Macro, since we want to escape from parent function & use lazy args. |
| #define FLEX_CHECK_VERIFIED(P, PACKED_TYPE) \ |
| if (reuse_tracker_) { \ |
| auto packed_type = PACKED_TYPE; \ |
| auto existing = (*reuse_tracker_)[P - buf_]; \ |
| if (existing == packed_type) return true; \ |
| /* Fail verification if already set with different type! */ \ |
| if (!Check(existing == 0)) return false; \ |
| (*reuse_tracker_)[P - buf_] = packed_type; \ |
| } |
| |
| bool VerifyVector(Reference r, const uint8_t *p, Type elem_type) { |
| // Any kind of nesting goes thru this function, so guard against that |
| // here, both with simple nesting checks, and the reuse tracker if on. |
| depth_++; |
| num_vectors_++; |
| if (!Check(depth_ <= max_depth_ && num_vectors_ <= max_vectors_)) |
| return false; |
| auto size_byte_width = r.byte_width_; |
| if (!VerifyBeforePointer(p, size_byte_width)) return false; |
| FLEX_CHECK_VERIFIED(p - size_byte_width, |
| PackedType(Builder::WidthB(size_byte_width), r.type_)); |
| auto sized = Sized(p, size_byte_width); |
| auto num_elems = sized.size(); |
| auto elem_byte_width = r.type_ == FBT_STRING || r.type_ == FBT_BLOB |
| ? uint8_t(1) |
| : r.byte_width_; |
| auto max_elems = SIZE_MAX / elem_byte_width; |
| if (!Check(num_elems < max_elems)) |
| return false; // Protect against byte_size overflowing. |
| auto byte_size = num_elems * elem_byte_width; |
| if (!VerifyFromPointer(p, byte_size)) return false; |
| if (elem_type == FBT_NULL) { |
| // Verify type bytes after the vector. |
| if (!VerifyFromPointer(p + byte_size, num_elems)) return false; |
| auto v = Vector(p, size_byte_width); |
| for (size_t i = 0; i < num_elems; i++) |
| if (!VerifyRef(v[i])) return false; |
| } else if (elem_type == FBT_KEY) { |
| auto v = TypedVector(p, elem_byte_width, FBT_KEY); |
| for (size_t i = 0; i < num_elems; i++) |
| if (!VerifyRef(v[i])) return false; |
| } else { |
| FLATBUFFERS_ASSERT(IsInline(elem_type)); |
| } |
| depth_--; |
| return true; |
| } |
| |
| bool VerifyKeys(const uint8_t *p, uint8_t byte_width) { |
| // The vector part of the map has already been verified. |
| const size_t num_prefixed_fields = 3; |
| if (!VerifyBeforePointer(p, byte_width * num_prefixed_fields)) return false; |
| p -= byte_width * num_prefixed_fields; |
| auto off = ReadUInt64(p, byte_width); |
| if (!VerifyOffset(off, p)) return false; |
| auto key_byte_with = |
| static_cast<uint8_t>(ReadUInt64(p + byte_width, byte_width)); |
| if (!VerifyByteWidth(key_byte_with)) return false; |
| return VerifyVector(Reference(p, byte_width, key_byte_with, FBT_VECTOR_KEY), |
| p - off, FBT_KEY); |
| } |
| |
| bool VerifyKey(const uint8_t *p) { |
| FLEX_CHECK_VERIFIED(p, PackedType(BIT_WIDTH_8, FBT_KEY)); |
| while (p < buf_ + size_) |
| if (*p++) return true; |
| return false; |
| } |
| |
| #undef FLEX_CHECK_VERIFIED |
| |
| bool VerifyTerminator(const String &s) { |
| return VerifyFromPointer(reinterpret_cast<const uint8_t *>(s.c_str()), |
| s.size() + 1); |
| } |
| |
| bool VerifyRef(Reference r) { |
| // r.parent_width_ and r.data_ already verified. |
| if (!VerifyByteWidth(r.byte_width_) || !VerifyType(r.type_)) { |
| return false; |
| } |
| if (IsInline(r.type_)) { |
| // Inline scalars, don't require further verification. |
| return true; |
| } |
| // All remaining types are an offset. |
| auto off = ReadUInt64(r.data_, r.parent_width_); |
| if (!VerifyOffset(off, r.data_)) return false; |
| auto p = r.Indirect(); |
| if (!VerifyAlignment(p, r.byte_width_)) return false; |
| switch (r.type_) { |
| case FBT_INDIRECT_INT: |
| case FBT_INDIRECT_UINT: |
| case FBT_INDIRECT_FLOAT: return VerifyFromPointer(p, r.byte_width_); |
| case FBT_KEY: return VerifyKey(p); |
| case FBT_MAP: |
| return VerifyVector(r, p, FBT_NULL) && VerifyKeys(p, r.byte_width_); |
| case FBT_VECTOR: return VerifyVector(r, p, FBT_NULL); |
| case FBT_VECTOR_INT: return VerifyVector(r, p, FBT_INT); |
| case FBT_VECTOR_BOOL: |
| case FBT_VECTOR_UINT: return VerifyVector(r, p, FBT_UINT); |
| case FBT_VECTOR_FLOAT: return VerifyVector(r, p, FBT_FLOAT); |
| case FBT_VECTOR_KEY: return VerifyVector(r, p, FBT_KEY); |
| case FBT_VECTOR_STRING_DEPRECATED: |
| // Use of FBT_KEY here intentional, see elsewhere. |
| return VerifyVector(r, p, FBT_KEY); |
| case FBT_BLOB: return VerifyVector(r, p, FBT_UINT); |
| case FBT_STRING: |
| return VerifyVector(r, p, FBT_UINT) && |
| VerifyTerminator(String(p, r.byte_width_)); |
| case FBT_VECTOR_INT2: |
| case FBT_VECTOR_UINT2: |
| case FBT_VECTOR_FLOAT2: |
| case FBT_VECTOR_INT3: |
| case FBT_VECTOR_UINT3: |
| case FBT_VECTOR_FLOAT3: |
| case FBT_VECTOR_INT4: |
| case FBT_VECTOR_UINT4: |
| case FBT_VECTOR_FLOAT4: { |
| uint8_t len = 0; |
| auto vtype = ToFixedTypedVectorElementType(r.type_, &len); |
| if (!VerifyType(vtype)) return false; |
| return VerifyFromPointer(p, static_cast<size_t>(r.byte_width_) * len); |
| } |
| default: return false; |
| } |
| } |
| |
| public: |
| bool VerifyBuffer() { |
| if (!Check(size_ >= 3)) return false; |
| auto end = buf_ + size_; |
| auto byte_width = *--end; |
| auto packed_type = *--end; |
| return VerifyByteWidth(byte_width) && Check(end - buf_ >= byte_width) && |
| VerifyRef(Reference(end - byte_width, byte_width, packed_type)); |
| } |
| |
| private: |
| const uint8_t *buf_; |
| size_t size_; |
| size_t depth_; |
| const size_t max_depth_; |
| size_t num_vectors_; |
| const size_t max_vectors_; |
| bool check_alignment_; |
| std::vector<uint8_t> *reuse_tracker_; |
| }; |
| |
| // Utility function that constructs the Verifier for you, see above for |
| // parameters. |
| inline bool VerifyBuffer(const uint8_t *buf, size_t buf_len, |
| std::vector<uint8_t> *reuse_tracker = nullptr) { |
| Verifier verifier(buf, buf_len, reuse_tracker); |
| return verifier.VerifyBuffer(); |
| } |
| |
| } // namespace flexbuffers |
| |
| #if defined(_MSC_VER) |
| # pragma warning(pop) |
| #endif |
| |
| #endif // FLATBUFFERS_FLEXBUFFERS_H_ |