blob: 6e668c5215defa8d43530d53e64b548786d47c6e [file] [log] [blame]
//
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package com.google.privacy.differentialprivacy;
import static com.google.common.truth.Truth.assertThat;
import static org.junit.Assert.assertThrows;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.JUnit4;
/** Tests the confidence intervals provided by {@link BoundedMean}. */
@RunWith(JUnit4.class)
public class BoundedMeanConfidenceIntervalTest {
private static final double ARBITRARY_EPSILON = 0.5;
private static final double ARBITRARY_DELTA = 0.00001;
private static final int ARBITRARY_MAX_CONTRIBUTIONS_PER_PARTITION = 1;
private static final int ARBITRARY_MAX_PARTITIONS_CONTRIBUTED = 1;
private static final double ARBITRARY_LOWER = -2.68545;
private static final double ARBITRARY_UPPER = 2.68545;
private static final double ARBITRARY_ALPHA = 0.23645;
private BoundedMean.Params.Builder builder;
@Before
public void setUp() {
builder =
BoundedMean.builder()
.epsilon(ARBITRARY_EPSILON)
.delta(ARBITRARY_DELTA)
.noise(new GaussianNoise())
.maxPartitionsContributed(ARBITRARY_MAX_PARTITIONS_CONTRIBUTED)
.maxContributionsPerPartition(ARBITRARY_MAX_CONTRIBUTIONS_PER_PARTITION)
.lower(ARBITRARY_LOWER)
.upper(ARBITRARY_UPPER);
}
@Test
public void computeConfidenceInterval_emptyMean_clampsToBounds() {
// For empty instances of mean, the confidence interval of the denominator is likely to contain
// negative values. This should not cause the mean's confidence interval to exceed the bounds.
builder = builder.lower(-1.0).upper(1.0);
for (int i = 0; i < 1000; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
// Using a large alpha to get small confidence intervals. This increases the chance of the
// denominator's confidence interval to be completely negative.
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.99);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-1.0);
assertThat(ci.upperBound()).isAtMost(1.0);
// Using a small alpha to get large confidence intervals. This increases the chance of the
// denominator's confidence interval to be partially negative.
ci = mean.computeConfidenceInterval(/*alpha=*/ 0.01);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-1.0);
assertThat(ci.upperBound()).isAtMost(1.0);
}
}
@Test
public void computeConfidenceInterval_emptyMean_positiveBounds_clampsToBounds() {
// For empty instances of mean, the confidence interval of the denominator is likely to contain
// negative values. This should not cause the mean's confidence interval to exceed the bounds.
builder = builder.lower(1.0).upper(2.0);
for (int i = 0; i < 1000; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
// Using a large alpha to get small confidence intervals. This increases the chance of the
// denominator's confidence interval to be completely negative.
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.99);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(1.0);
assertThat(ci.upperBound()).isAtMost(2.0);
// Using a small alpha to get large confidence intervals. This increases the chance of the
// denominator's confidence interval to be partially negative.
ci = mean.computeConfidenceInterval(/*alpha=*/ 0.01);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(1.0);
assertThat(ci.upperBound()).isAtMost(2.0);
}
}
@Test
public void computeConfidenceInterval_emptyMean_negativeBounds_clampsToBounds() {
// For empty instances of mean, the confidence interval of the denominator is likely to contain
// negative values. This should not cause the mean's confidence interval to exceed the bounds.
builder = builder.lower(-2.0).upper(-1.0);
for (int i = 0; i < 1000; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
// Using a large alpha to get small confidence intervals. This increases the chance of the
// denominator's confidence interval to be completely negative.
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.99);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-2.0);
assertThat(ci.upperBound()).isAtMost(-1.0);
// Using a small alpha to get large confidence intervals. This increases the chance of the
// denominator's confidence interval to be partially negative.
ci = mean.computeConfidenceInterval(/*alpha=*/ 0.01);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-2.0);
assertThat(ci.upperBound()).isAtMost(-1.0);
}
}
@Test
public void computeConfidenceInterval_rawValueAtUpperBound_clampsToBounds() {
builder = builder.lower(-1.0).upper(1.0);
for (int i = 0; i < 1000; i++) {
BoundedMean mean = builder.build();
mean.addEntry(1.0);
mean.computeResult();
// Using a large alpha to get small confidence intervals. This increases the chance of the
// denominator's confidence interval to be completely negative.
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.99);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-1.0);
assertThat(ci.upperBound()).isAtMost(1.0);
// Using a small alpha to get large confidence intervals. This increases the chance of the
// denominator's confidence interval to be partially negative.
ci = mean.computeConfidenceInterval(/*alpha=*/ 0.01);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-1.0);
assertThat(ci.upperBound()).isAtMost(1.0);
}
}
@Test
public void computeConfidenceInterval_rawValueAtLowerBound_clampsToBounds() {
builder = builder.lower(-1.0).upper(1.0);
for (int i = 0; i < 1000; i++) {
BoundedMean mean = builder.build();
mean.addEntry(-1.0);
mean.computeResult();
// Using a large alpha to get small confidence intervals. This increases the chance of the
// denominator's confidence interval to be completely negative.
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.99);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-1.0);
assertThat(ci.upperBound()).isAtMost(1.0);
// Using a small alpha to get large confidence intervals. This increases the chance of the
// denominator's confidence interval to be partially negative.
ci = mean.computeConfidenceInterval(/*alpha=*/ 0.01);
assertThat(ci.lowerBound()).isAtMost(ci.upperBound());
assertThat(ci.lowerBound()).isAtLeast(-1.0);
assertThat(ci.upperBound()).isAtMost(1.0);
}
}
@Test
public void computeConfidenceInterval_gaussianNoise_calledTwiceForSameAlpha_returnsSameResult() {
BoundedMean mean = builder.noise(new GaussianNoise()).build();
mean.computeResult();
assertThat(mean.computeConfidenceInterval(ARBITRARY_ALPHA))
.isEqualTo(mean.computeConfidenceInterval(ARBITRARY_ALPHA));
}
@Test
public void computeConfidenceInterval_laplaceNoise_calledTwiceForSameAlpha_returnsSameResult() {
BoundedMean mean = builder.noise(new LaplaceNoise()).delta(null).build();
mean.computeResult();
assertThat(mean.computeConfidenceInterval(ARBITRARY_ALPHA))
.isEqualTo(mean.computeConfidenceInterval(ARBITRARY_ALPHA));
}
@Test
public void
computeConfidenceInterval_gaussianNoise_resultForSmallAlphaContainedInResultForLargeAlpha() {
BoundedMean mean = builder.noise(new GaussianNoise()).build();
// Adding many entries to prevent clamping.
for (int i = 0; i < 1000; i++) {
mean.addEntry(0.5);
}
mean.computeResult();
assertThat(mean.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).lowerBound())
.isLessThan(mean.computeConfidenceInterval(ARBITRARY_ALPHA).lowerBound());
assertThat(mean.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).upperBound())
.isGreaterThan(mean.computeConfidenceInterval(ARBITRARY_ALPHA).upperBound());
}
@Test
public void
computeConfidenceInterval_laplaceNoise_resultForSmallAlphaContainedInResultForLargeAlpha() {
BoundedMean mean = builder.noise(new LaplaceNoise()).delta(null).build();
// Adding many entries to prevent clamping.
for (int i = 0; i < 1000; i++) {
mean.addEntry(0.5);
}
mean.computeResult();
assertThat(mean.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).lowerBound())
.isLessThan(mean.computeConfidenceInterval(ARBITRARY_ALPHA).lowerBound());
assertThat(mean.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).upperBound())
.isGreaterThan(mean.computeConfidenceInterval(ARBITRARY_ALPHA).upperBound());
}
@Test
public void
computeConfidenceInterval_gaussianNoise_smallAlpha_emptyMean_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise()).lower(1.0).upper(2.0);
// When empty, the raw mean is assumed to be the midpoint between lower and upper.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.1);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 2176 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(2176);
}
@Test
public void
computeConfidenceInterval_laplaceNoise_smallAlpha_emptyMean_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null).lower(1.0).upper(2.0);
// When empty, the raw mean is assumed to be the midpoint between lower and upper.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.1);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 2176 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(2176);
}
@Test
public void
computeConfidenceInterval_gaussianNoise_largeAlpha_emptyMean_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise()).lower(1.0).upper(2.0);
// When empty, the raw mean is assumed to be the midpoint between lower and upper.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.9);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 182 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(182);
}
@Test
public void
computeConfidenceInterval_laplaceNoise_largeAlpha_emptyMean_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null).lower(1.0).upper(2.0);
// When empty, the raw mean is assumed to be the midpoint between lower and upper.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.9);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 182 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(182);
}
@Test
public void
computeConfidenceInterval_gaussianNoise_smallAlpha_oneEntry_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise()).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.addEntry(rawValue);
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.1);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 2176 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(2176);
}
@Test
public void
computeConfidenceInterval_laplaceNoise_smallAlpha_oneEntry_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.addEntry(rawValue);
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.1);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 2176 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(2176);
}
@Test
public void
computeConfidenceInterval_gaussianNoise_largeAlpha_oneEntry_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise()).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.addEntry(rawValue);
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.9);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 182 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(182);
}
@Test
public void
computeConfidenceInterval_laplaceNoise_largeAlpha_oneEntry_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
mean.addEntry(rawValue);
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.9);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 182 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(182);
}
@Test
public void
computeConfidenceInterval_gaussianNoise_smallAlpha_manyEntries_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise()).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
for (int j = 0; j < 100; j++) {
mean.addEntry(rawValue);
}
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.1);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 2176 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(2176);
}
@Test
public void
computeConfidenceInterval_laplaceNoise_smallAlpha_manyEntries_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
for (int j = 0; j < 100; j++) {
mean.addEntry(rawValue);
}
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.1);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 2176 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(2176);
}
@Test
public void
computeConfidenceInterval_gaussianNoise_largeAlpha_manyEntries_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise()).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
for (int j = 0; j < 100; j++) {
mean.addEntry(rawValue);
}
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.9);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 182 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(182);
}
@Test
public void
computeConfidenceInterval_laplaceNoise_largeAlpha_manyEntries_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null).lower(1.0).upper(2.0);
// Choosing the midpoint between lower and upper to maximize the variance of the result. This
// should increase the likelihood of detecting potential violations of the confidence level.
double rawValue = 1.5;
int hits = 0;
for (int i = 0; i < 2500; i++) {
BoundedMean mean = builder.build();
for (int j = 0; j < 100; j++) {
mean.addEntry(rawValue);
}
mean.computeResult();
ConfidenceInterval ci = mean.computeConfidenceInterval(/*alpha=*/ 0.9);
if (ci.lowerBound() <= rawValue && rawValue <= ci.upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 182 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(182);
}
@Test
public void computeConfidenceInterval_calledBeforeComputeResult_throwsException() {
BoundedMean mean = builder.build();
assertThrows(
IllegalStateException.class, () -> mean.computeConfidenceInterval(ARBITRARY_ALPHA));
}
@Test
public void computeConfidenceInterval_calledAfterSerialization_throwsException() {
BoundedMean mean = builder.build();
mean.getSerializableSummary();
assertThrows(
IllegalStateException.class, () -> mean.computeConfidenceInterval(ARBITRARY_ALPHA));
}
}