blob: 541ce521f6c4daa5eb41c4726687947a86adfb5a [file] [log] [blame]
//
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
package com.google.privacy.differentialprivacy;
import static com.google.common.truth.Truth.assertThat;
import static org.junit.Assert.assertThrows;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.JUnit4;
/** Tests the confidence intervals provided by {@link Count}. */
@RunWith(JUnit4.class)
public class CountConfidenceIntervalTest {
private static final double ARBITRARY_EPSILON = 0.5;
private static final double ARBITRARY_DELTA = 0.00001;
private static final int ARBITRARY_MAX_PARTITIONS_CONTRIBUTED = 1;
private static final double ARBITRARY_ALPHA = 0.23645;
private Count.Params.Builder builder;
@Before
public void setUp() {
builder =
Count.builder()
.epsilon(ARBITRARY_EPSILON)
.delta(ARBITRARY_DELTA)
.noise(new GaussianNoise())
.maxPartitionsContributed(ARBITRARY_MAX_PARTITIONS_CONTRIBUTED);
}
@Test
public void computeConfidenceInterval_clampsNegativeSubinterval() {
for (int i = 0; i < 1000; i++) {
Count count = builder.build();
count.computeResult();
// Using a large alpha to get a small confidence interval. This increases the chance of both
// the lower and the upper bound being clamped.
assertThat(count.computeConfidenceInterval(/*alpha=*/ 0.99).lowerBound()).isAtLeast(0.0);
assertThat(count.computeConfidenceInterval(/*alpha=*/ 0.99).upperBound()).isAtLeast(0.0);
// Using a small alpha to get a large confidence interval. This increases the chance of only
// the the upper bound being clamped.
assertThat(count.computeConfidenceInterval(/*alpha=*/ 0.01).lowerBound()).isAtLeast(0.0);
assertThat(count.computeConfidenceInterval(/*alpha=*/ 0.01).upperBound()).isAtLeast(0.0);
}
}
@Test
public void computeConfidenceInterval_gaussianNoise_calledTwiceForSameAlpha_returnsSameResult() {
Count count = builder.noise(new GaussianNoise()).build();
count.incrementBy(100000000); // incrementing by large number to prevent clamping
count.computeResult();
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA))
.isEqualTo(count.computeConfidenceInterval(ARBITRARY_ALPHA));
}
@Test
public void computeConfidenceInterval_laplaceNoise_calledTwiceForSameAlpha_returnsSameResult() {
Count count = builder.noise(new LaplaceNoise()).delta(null).build();
count.incrementBy(100000000); // incrementing by large number to prevent clamping
count.computeResult();
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA))
.isEqualTo(count.computeConfidenceInterval(ARBITRARY_ALPHA));
}
@Test
public void
computeConfidenceInterval_gaussianNoise_resultForSmallAlphaContainedInResultForLargeAlpha() {
Count count = builder.noise(new GaussianNoise()).build();
count.incrementBy(100000000); // incrementing by large number to prevent clamping
count.computeResult();
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).lowerBound())
.isLessThan(count.computeConfidenceInterval(ARBITRARY_ALPHA).lowerBound());
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).upperBound())
.isGreaterThan(count.computeConfidenceInterval(ARBITRARY_ALPHA).upperBound());
}
@Test
public void
computeConfidenceInterval_laplaceNoise_resultForSmallAlphaContainedInResultForLargeAlpha() {
Count count = builder.noise(new LaplaceNoise()).delta(null).build();
count.incrementBy(100000000); // incrementing by large number to prevent clamping
count.computeResult();
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).lowerBound())
.isLessThan(count.computeConfidenceInterval(ARBITRARY_ALPHA).lowerBound());
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA * 0.5).upperBound())
.isGreaterThan(count.computeConfidenceInterval(ARBITRARY_ALPHA).upperBound());
}
@Test
public void
computeConfidenceInterval_gaussianNoise_resultMatchesConfidenceIntervalOfGaussianNoise() {
Count count =
builder
.epsilon(ARBITRARY_EPSILON)
.delta(ARBITRARY_DELTA)
.noise(new GaussianNoise())
.maxPartitionsContributed(ARBITRARY_MAX_PARTITIONS_CONTRIBUTED)
.build();
count.incrementBy(100000000); // incrementing by large number to prevent clamping
long result = count.computeResult();
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA))
.isEqualTo(
new GaussianNoise()
.computeConfidenceInterval(
result,
/*l0Sensitivity=*/ ARBITRARY_MAX_PARTITIONS_CONTRIBUTED,
/*lInfSensitivity=*/ 1,
ARBITRARY_EPSILON,
ARBITRARY_DELTA,
ARBITRARY_ALPHA));
}
@Test
public void
computeConfidenceInterval_laplaceNoise_resultMatchesConfidenceIntervalOfLaplaceNoise() {
Count count =
builder
.epsilon(ARBITRARY_EPSILON)
.delta(null)
.noise(new LaplaceNoise())
.maxPartitionsContributed(ARBITRARY_MAX_PARTITIONS_CONTRIBUTED)
.build();
count.incrementBy(100000000); // incrementing by large number to prevent clamping
long result = count.computeResult();
assertThat(count.computeConfidenceInterval(ARBITRARY_ALPHA))
.isEqualTo(
new LaplaceNoise()
.computeConfidenceInterval(
result,
/*l0Sensitivity=*/ ARBITRARY_MAX_PARTITIONS_CONTRIBUTED,
/*lInfSensitivity=*/ 1,
ARBITRARY_EPSILON,
/*delta=*/ null,
ARBITRARY_ALPHA));
}
@Test
public void computeConfidenceInterval_gaussianNoise_smallAlpha_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise());
int rawCount = 14523;
int hits = 0;
for (int i = 0; i < 100000; i++) {
Count count = builder.build();
count.incrementBy(rawCount);
count.computeResult();
if (count.computeConfidenceInterval(/*alpha=*/ 0.1).lowerBound() <= rawCount
&& rawCount <= count.computeConfidenceInterval(/*alpha=*/ 0.1).upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 89546 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(89546);
}
@Test
public void computeConfidenceInterval_laplaceNoise_smallAlpha_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null);
int rawCount = 14523;
int hits = 0;
for (int i = 0; i < 100000; i++) {
Count count = builder.build();
count.incrementBy(rawCount);
count.computeResult();
if (count.computeConfidenceInterval(/*alpha=*/ 0.1).lowerBound() <= rawCount
&& rawCount <= count.computeConfidenceInterval(/*alpha=*/ 0.1).upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.1, i.e., the raw value
// is within the confidence interval with probability of at least 0.9, then the hits count will
// be at least 89546 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(89546);
}
@Test
public void computeConfidenceInterval_gaussianNoise_largeAlpha_satisfiesConfidenceLevel() {
builder.noise(new GaussianNoise());
int rawCount = 14523;
int hits = 0;
for (int i = 0; i < 100000; i++) {
Count count = builder.build();
count.incrementBy(rawCount);
count.computeResult();
if (count.computeConfidenceInterval(/*alpha=*/ 0.9).lowerBound() <= rawCount
&& rawCount <= count.computeConfidenceInterval(/*alpha=*/ 0.9).upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 9552 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(9552);
}
@Test
public void computeConfidenceInterval_laplaceNoise_largeAlpha_satisfiesConfidenceLevel() {
builder.noise(new LaplaceNoise()).delta(null);
int rawCount = 14523;
int hits = 0;
for (int i = 0; i < 100000; i++) {
Count count = builder.build();
count.incrementBy(rawCount);
count.computeResult();
if (count.computeConfidenceInterval(/*alpha=*/ 0.9).lowerBound() <= rawCount
&& rawCount <= count.computeConfidenceInterval(/*alpha=*/ 0.9).upperBound()) {
hits++;
}
}
// Assuming that the true alpha of the confidence interval mechanism is 0.9, i.e., the raw value
// is within the confidence interval with probability of at least 0.1, then the hits count will
// be at least 9552 with probability greater than 1 - 10^-6.
assertThat(hits).isAtLeast(9552);
}
@Test
public void computeConfidenceInterval_calledBeforeComputeResult_throwsException() {
Count count = builder.build();
assertThrows(
IllegalStateException.class, () -> count.computeConfidenceInterval(ARBITRARY_ALPHA));
}
@Test
public void computeConfidenceInterval_calledAfterSerialization_throwsException() {
Count count = builder.build();
count.getSerializableSummary();
assertThrows(
IllegalStateException.class, () -> count.computeConfidenceInterval(ARBITRARY_ALPHA));
}
}