| // |
| // Copyright 2020 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef CREATE_SAMPLES_MEAN_H |
| #define CREATE_SAMPLES_MEAN_H |
| |
| #include "algorithms/bounded-mean.h" |
| |
| #include <chrono> |
| #include <cstdlib> |
| #include <ctime> |
| #include <filesystem> |
| #include <fstream> |
| #include <iomanip> |
| #include <iostream> |
| #include <iterator> |
| #include <map> |
| #include <memory> |
| #include <vector> |
| #include <string> |
| #include <sys/stat.h> |
| |
| #include "absl/random/distributions.h" |
| #include "absl/memory/memory.h" |
| |
| #include "algorithms/algorithm.h" |
| #include "algorithms/bounded-sum.h" |
| #include "algorithms/count.h" |
| #include "algorithms/numerical-mechanisms.h" |
| #include "algorithms/util.h" |
| #include "base/statusor.h" |
| #include "proto/data.pb.h" |
| #include "testing/sequence.h" |
| |
| namespace differential_privacy { |
| |
| namespace testing { |
| |
| // Creates pairs of samples of differentially private means. |
| // Each sample-pair replicates a unique scenario constructed in the proto for |
| // BoundedMeanDpTest.java, available here: |
| // https://github.com/google/differential-privacy/blob/main/proto/testing/bounded_mean_dp_test_cases.textproto. |
| |
| extern const std::string mean_samples_folder; |
| |
| double DiscretizeMean(double true_value, double granularity); |
| |
| // Construct the BoundedMean algorithm. |
| double DPMean(std::vector<double> values, double granularity, |
| double epsilon, int max_partitions, int max_contributions, int lower, int upper); |
| |
| // Construct the BoundedMean algorithm for large values. |
| double DPLargeMean(double initial_value, double extra_values_length, |
| double extra_value, double granularity, double epsilon, int max_partitions, |
| int max_contributions, int lower, int upper); |
| |
| // Creates a folder to contain all samples with a particular ratio value |
| // (e.g., R95). Every folder contains 22 subfolders for each unique sample-pair. |
| // Every subfolder contains seven runs of each sample-pair (14 files in total). |
| void CreateSingleScenarioMean(int scenario, std::vector<double>valuesA, |
| std::vector<double>valuesB, double granularity, double epsilon, |
| int max_partitions, int max_contributions, int lower, int upper, |
| int number_of_samples, double ratio, double initial_value = 0, |
| double extra_values_length = 0, double extra_value = 0); |
| |
| // Runs each sample-pair with parameters that replicate those specified in: |
| // https://github.com/google/differential-privacy/blob/main/proto/testing/bounded_mean_dp_test_cases.textproto. |
| void GenerateAllScenariosMean(double ratio); |
| |
| } // testing |
| } // differential_privacy |
| |
| #endif // CREATE_SAMPLES_MEAN_H |