blob: a4834e34f8f6ab2f8652684bbdbfcbf05b12ad84 [file] [log] [blame]
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badTriangle = "mat: invalid triangle"
badCholesky = "mat: invalid Cholesky factorization"
)
var (
_ Matrix = (*Cholesky)(nil)
_ Symmetric = (*Cholesky)(nil)
_ Matrix = (*BandCholesky)(nil)
_ Symmetric = (*BandCholesky)(nil)
_ Banded = (*BandCholesky)(nil)
_ SymBanded = (*BandCholesky)(nil)
)
// Cholesky is a symmetric positive definite matrix represented by its
// Cholesky decomposition.
//
// The decomposition can be constructed using the Factorize method. The
// factorization itself can be extracted using the UTo or LTo methods, and the
// original symmetric matrix can be recovered with ToSym.
//
// Note that this matrix representation is useful for certain operations, in
// particular finding solutions to linear equations. It is very inefficient
// at other operations, in particular At is slow.
//
// Cholesky methods may only be called on a value that has been successfully
// initialized by a call to Factorize that has returned true. Calls to methods
// of an unsuccessful Cholesky factorization will panic.
type Cholesky struct {
// The chol pointer must never be retained as a pointer outside the Cholesky
// struct, either by returning chol outside the struct or by setting it to
// a pointer coming from outside. The same prohibition applies to the data
// slice within chol.
chol *TriDense
cond float64
}
// updateCond updates the condition number of the Cholesky decomposition. If
// norm > 0, then that norm is used as the norm of the original matrix A, otherwise
// the norm is estimated from the decomposition.
func (c *Cholesky) updateCond(norm float64) {
n := c.chol.mat.N
work := getFloats(3*n, false)
defer putFloats(work)
if norm < 0 {
// This is an approximation. By the definition of a norm,
// |AB| <= |A| |B|.
// Since A = Uᵀ*U, we get for the condition number κ that
// κ(A) := |A| |A^-1| = |Uᵀ*U| |A^-1| <= |Uᵀ| |U| |A^-1|,
// so this will overestimate the condition number somewhat.
// The norm of the original factorized matrix cannot be stored
// because of update possibilities.
unorm := lapack64.Lantr(CondNorm, c.chol.mat, work)
lnorm := lapack64.Lantr(CondNormTrans, c.chol.mat, work)
norm = unorm * lnorm
}
sym := c.chol.asSymBlas()
iwork := getInts(n, false)
v := lapack64.Pocon(sym, norm, work, iwork)
putInts(iwork)
c.cond = 1 / v
}
// Dims returns the dimensions of the matrix.
func (ch *Cholesky) Dims() (r, c int) {
if !ch.valid() {
panic(badCholesky)
}
r, c = ch.chol.Dims()
return r, c
}
// At returns the element at row i, column j.
func (c *Cholesky) At(i, j int) float64 {
if !c.valid() {
panic(badCholesky)
}
n := c.Symmetric()
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
var val float64
for k := 0; k <= min(i, j); k++ {
val += c.chol.at(k, i) * c.chol.at(k, j)
}
return val
}
// T returns the receiver, the transpose of a symmetric matrix.
func (c *Cholesky) T() Matrix {
return c
}
// Symmetric implements the Symmetric interface and returns the number of rows
// in the matrix (this is also the number of columns).
func (c *Cholesky) Symmetric() int {
r, _ := c.chol.Dims()
return r
}
// Cond returns the condition number of the factorized matrix.
func (c *Cholesky) Cond() float64 {
if !c.valid() {
panic(badCholesky)
}
return c.cond
}
// Factorize calculates the Cholesky decomposition of the matrix A and returns
// whether the matrix is positive definite. If Factorize returns false, the
// factorization must not be used.
func (c *Cholesky) Factorize(a Symmetric) (ok bool) {
n := a.Symmetric()
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol.Reset()
c.chol.reuseAsNonZeroed(n, Upper)
}
copySymIntoTriangle(c.chol, a)
sym := c.chol.asSymBlas()
work := getFloats(c.chol.mat.N, false)
norm := lapack64.Lansy(CondNorm, sym, work)
putFloats(work)
_, ok = lapack64.Potrf(sym)
if ok {
c.updateCond(norm)
} else {
c.Reset()
}
return ok
}
// Reset resets the factorization so that it can be reused as the receiver of a
// dimensionally restricted operation.
func (c *Cholesky) Reset() {
if c.chol != nil {
c.chol.Reset()
}
c.cond = math.Inf(1)
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (c *Cholesky) IsEmpty() bool {
return c.chol == nil || c.chol.IsEmpty()
}
// SetFromU sets the Cholesky decomposition from the given triangular matrix.
// SetFromU panics if t is not upper triangular. If the receiver is empty it
// is resized to be n×n, the size of t. If dst is non-empty, SetFromU panics
// if c is not of size n×n. Note that t is copied into, not stored inside, the
// receiver.
func (c *Cholesky) SetFromU(t Triangular) {
n, kind := t.Triangle()
if kind != Upper {
panic("cholesky: matrix must be upper triangular")
}
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol.reuseAsNonZeroed(n, Upper)
}
c.chol.Copy(t)
c.updateCond(-1)
}
// Clone makes a copy of the input Cholesky into the receiver, overwriting the
// previous value of the receiver. Clone does not place any restrictions on receiver
// shape. Clone panics if the input Cholesky is not the result of a valid decomposition.
func (c *Cholesky) Clone(chol *Cholesky) {
if !chol.valid() {
panic(badCholesky)
}
n := chol.Symmetric()
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
}
c.chol.Copy(chol.chol)
c.cond = chol.cond
}
// Det returns the determinant of the matrix that has been factorized.
func (c *Cholesky) Det() float64 {
if !c.valid() {
panic(badCholesky)
}
return math.Exp(c.LogDet())
}
// LogDet returns the log of the determinant of the matrix that has been factorized.
func (c *Cholesky) LogDet() float64 {
if !c.valid() {
panic(badCholesky)
}
var det float64
for i := 0; i < c.chol.mat.N; i++ {
det += 2 * math.Log(c.chol.mat.Data[i*c.chol.mat.Stride+i])
}
return det
}
// SolveTo finds the matrix X that solves A * X = B where A is represented
// by the Cholesky decomposition. The result is stored in-place into dst.
// If the Cholesky decomposition is singular or near-singular a Condition error
// is returned. See the documentation for Condition for more information.
func (c *Cholesky) SolveTo(dst *Dense, b Matrix) error {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
bm, bn := b.Dims()
if n != bm {
panic(ErrShape)
}
dst.reuseAsNonZeroed(bm, bn)
if b != dst {
dst.Copy(b)
}
lapack64.Potrs(c.chol.mat, dst.mat)
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
// SolveCholTo finds the matrix X that solves A * X = B where A and B are represented
// by their Cholesky decompositions a and b. The result is stored in-place into
// dst.
// If the Cholesky decomposition is singular or near-singular a Condition error
// is returned. See the documentation for Condition for more information.
func (a *Cholesky) SolveCholTo(dst *Dense, b *Cholesky) error {
if !a.valid() || !b.valid() {
panic(badCholesky)
}
bn := b.chol.mat.N
if a.chol.mat.N != bn {
panic(ErrShape)
}
dst.reuseAsZeroed(bn, bn)
dst.Copy(b.chol.T())
blas64.Trsm(blas.Left, blas.Trans, 1, a.chol.mat, dst.mat)
blas64.Trsm(blas.Left, blas.NoTrans, 1, a.chol.mat, dst.mat)
blas64.Trmm(blas.Right, blas.NoTrans, 1, b.chol.mat, dst.mat)
if a.cond > ConditionTolerance {
return Condition(a.cond)
}
return nil
}
// SolveVecTo finds the vector x that solves A * x = b where A is represented
// by the Cholesky decomposition. The result is stored in-place into
// dst.
// If the Cholesky decomposition is singular or near-singular a Condition error
// is returned. See the documentation for Condition for more information.
func (c *Cholesky) SolveVecTo(dst *VecDense, b Vector) error {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
switch rv := b.(type) {
default:
dst.reuseAsNonZeroed(n)
return c.SolveTo(dst.asDense(), b)
case RawVectorer:
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
lapack64.Potrs(c.chol.mat, dst.asGeneral())
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
}
// RawU returns the Triangular matrix used to store the Cholesky decomposition of
// the original matrix A. The returned matrix should not be modified. If it is
// modified, the decomposition is invalid and should not be used.
func (c *Cholesky) RawU() Triangular {
return c.chol
}
// UTo stores into dst the n×n upper triangular matrix U from a Cholesky
// decomposition
// A = Uᵀ * U.
// If dst is empty, it is resized to be an n×n upper triangular matrix. When dst
// is non-empty, UTo panics if dst is not n×n or not Upper. UTo will also panic
// if the receiver does not contain a successful factorization.
func (c *Cholesky) UTo(dst *TriDense) {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst.IsEmpty() {
dst.ReuseAsTri(n, Upper)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Upper {
panic(ErrTriangle)
}
}
dst.Copy(c.chol)
}
// LTo stores into dst the n×n lower triangular matrix L from a Cholesky
// decomposition
// A = L * Lᵀ.
// If dst is empty, it is resized to be an n×n lower triangular matrix. When dst
// is non-empty, LTo panics if dst is not n×n or not Lower. LTo will also panic
// if the receiver does not contain a successful factorization.
func (c *Cholesky) LTo(dst *TriDense) {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst.IsEmpty() {
dst.ReuseAsTri(n, Lower)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Lower {
panic(ErrTriangle)
}
}
dst.Copy(c.chol.TTri())
}
// ToSym reconstructs the original positive definite matrix from its
// Cholesky decomposition, storing the result into dst. If dst is
// empty it is resized to be n×n. If dst is non-empty, ToSym panics
// if dst is not of size n×n. ToSym will also panic if the receiver
// does not contain a successful factorization.
func (c *Cholesky) ToSym(dst *SymDense) {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst.IsEmpty() {
dst.ReuseAsSym(n)
} else {
n2 := dst.Symmetric()
if n != n2 {
panic(ErrShape)
}
}
// Create a TriDense representing the Cholesky factor U with dst's
// backing slice.
// Operations on u are reflected in s.
u := &TriDense{
mat: blas64.Triangular{
Uplo: blas.Upper,
Diag: blas.NonUnit,
N: n,
Data: dst.mat.Data,
Stride: dst.mat.Stride,
},
cap: n,
}
u.Copy(c.chol)
// Compute the product Uᵀ*U using the algorithm from LAPACK/TESTING/LIN/dpot01.f
a := u.mat.Data
lda := u.mat.Stride
bi := blas64.Implementation()
for k := n - 1; k >= 0; k-- {
a[k*lda+k] = bi.Ddot(k+1, a[k:], lda, a[k:], lda)
if k > 0 {
bi.Dtrmv(blas.Upper, blas.Trans, blas.NonUnit, k, a, lda, a[k:], lda)
}
}
}
// InverseTo computes the inverse of the matrix represented by its Cholesky
// factorization and stores the result into s. If the factorized
// matrix is ill-conditioned, a Condition error will be returned.
// Note that matrix inversion is numerically unstable, and should generally be
// avoided where possible, for example by using the Solve routines.
func (c *Cholesky) InverseTo(dst *SymDense) error {
if !c.valid() {
panic(badCholesky)
}
dst.reuseAsNonZeroed(c.chol.mat.N)
// Create a TriDense representing the Cholesky factor U with the backing
// slice from dst.
// Operations on u are reflected in dst.
u := &TriDense{
mat: blas64.Triangular{
Uplo: blas.Upper,
Diag: blas.NonUnit,
N: dst.mat.N,
Data: dst.mat.Data,
Stride: dst.mat.Stride,
},
cap: dst.mat.N,
}
u.Copy(c.chol)
_, ok := lapack64.Potri(u.mat)
if !ok {
return Condition(math.Inf(1))
}
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
// Scale multiplies the original matrix A by a positive constant using
// its Cholesky decomposition, storing the result in-place into the receiver.
// That is, if the original Cholesky factorization is
// Uᵀ * U = A
// the updated factorization is
// U'ᵀ * U' = f A = A'
// Scale panics if the constant is non-positive, or if the receiver is non-empty
// and is of a different size from the input.
func (c *Cholesky) Scale(f float64, orig *Cholesky) {
if !orig.valid() {
panic(badCholesky)
}
if f <= 0 {
panic("cholesky: scaling by a non-positive constant")
}
n := orig.Symmetric()
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else if c.chol.mat.N != n {
panic(ErrShape)
}
c.chol.ScaleTri(math.Sqrt(f), orig.chol)
c.cond = orig.cond // Scaling by a positive constant does not change the condition number.
}
// ExtendVecSym computes the Cholesky decomposition of the original matrix A,
// whose Cholesky decomposition is in a, extended by a the n×1 vector v according to
// [A w]
// [w' k]
// where k = v[n-1] and w = v[:n-1]. The result is stored into the receiver.
// In order for the updated matrix to be positive definite, it must be the case
// that k > w' A^-1 w. If this condition does not hold then ExtendVecSym will
// return false and the receiver will not be updated.
//
// ExtendVecSym will panic if v.Len() != a.Symmetric()+1 or if a does not contain
// a valid decomposition.
func (c *Cholesky) ExtendVecSym(a *Cholesky, v Vector) (ok bool) {
n := a.Symmetric()
if v.Len() != n+1 {
panic(badSliceLength)
}
if !a.valid() {
panic(badCholesky)
}
// The algorithm is commented here, but see also
// https://math.stackexchange.com/questions/955874/cholesky-factor-when-adding-a-row-and-column-to-already-factorized-matrix
// We have A and want to compute the Cholesky of
// [A w]
// [w' k]
// We want
// [U c]
// [0 d]
// to be the updated Cholesky, and so it must be that
// [A w] = [U' 0] [U c]
// [w' k] [c' d] [0 d]
// Thus, we need
// 1) A = U'U (true by the original decomposition being valid),
// 2) U' * c = w => c = U'^-1 w
// 3) c'*c + d'*d = k => d = sqrt(k-c'*c)
// First, compute c = U'^-1 a
w := NewVecDense(n, nil)
w.CopyVec(v)
k := v.At(n, 0)
var t VecDense
_ = t.SolveVec(a.chol.T(), w)
dot := Dot(&t, &t)
if dot >= k {
return false
}
d := math.Sqrt(k - dot)
newU := NewTriDense(n+1, Upper, nil)
newU.Copy(a.chol)
for i := 0; i < n; i++ {
newU.SetTri(i, n, t.At(i, 0))
}
newU.SetTri(n, n, d)
c.chol = newU
c.updateCond(-1)
return true
}
// SymRankOne performs a rank-1 update of the original matrix A and refactorizes
// its Cholesky factorization, storing the result into the receiver. That is, if
// in the original Cholesky factorization
// Uᵀ * U = A,
// in the updated factorization
// U'ᵀ * U' = A + alpha * x * xᵀ = A'.
//
// Note that when alpha is negative, the updating problem may be ill-conditioned
// and the results may be inaccurate, or the updated matrix A' may not be
// positive definite and not have a Cholesky factorization. SymRankOne returns
// whether the updated matrix A' is positive definite. If the update fails
// the receiver is left unchanged.
//
// SymRankOne updates a Cholesky factorization in O(n²) time. The Cholesky
// factorization computation from scratch is O(n³).
func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x Vector) (ok bool) {
if !orig.valid() {
panic(badCholesky)
}
n := orig.Symmetric()
if r, c := x.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if orig != c {
if c.chol == nil {
c.chol = NewTriDense(n, Upper, nil)
} else if c.chol.mat.N != n {
panic(ErrShape)
}
c.chol.Copy(orig.chol)
}
if alpha == 0 {
return true
}
// Algorithms for updating and downdating the Cholesky factorization are
// described, for example, in
// - J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart: LINPACK
// Users' Guide. SIAM (1979), pages 10.10--10.14
// or
// - P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders: Methods for
// modifying matrix factorizations. Mathematics of Computation 28(126)
// (1974), Method C3 on page 521
//
// The implementation is based on LINPACK code
// http://www.netlib.org/linpack/dchud.f
// http://www.netlib.org/linpack/dchdd.f
// and
// https://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646
//
// According to http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00301.html
// LINPACK is released under BSD license.
//
// See also:
// - M. A. Saunders: Large-scale Linear Programming Using the Cholesky
// Factorization. Technical Report Stanford University (1972)
// http://i.stanford.edu/pub/cstr/reports/cs/tr/72/252/CS-TR-72-252.pdf
// - Matthias Seeger: Low rank updates for the Cholesky decomposition.
// EPFL Technical Report 161468 (2004)
// http://infoscience.epfl.ch/record/161468
work := getFloats(n, false)
defer putFloats(work)
var xmat blas64.Vector
if rv, ok := x.(RawVectorer); ok {
xmat = rv.RawVector()
} else {
var tmp *VecDense
tmp.CopyVec(x)
xmat = tmp.RawVector()
}
blas64.Copy(xmat, blas64.Vector{N: n, Data: work, Inc: 1})
if alpha > 0 {
// Compute rank-1 update.
if alpha != 1 {
blas64.Scal(math.Sqrt(alpha), blas64.Vector{N: n, Data: work, Inc: 1})
}
umat := c.chol.mat
stride := umat.Stride
for i := 0; i < n; i++ {
// Compute parameters of the Givens matrix that zeroes
// the i-th element of x.
c, s, r, _ := blas64.Rotg(umat.Data[i*stride+i], work[i])
if r < 0 {
// Multiply by -1 to have positive diagonal
// elemnts.
r *= -1
c *= -1
s *= -1
}
umat.Data[i*stride+i] = r
if i < n-1 {
// Multiply the extended factorization matrix by
// the Givens matrix from the left. Only
// the i-th row and x are modified.
blas64.Rot(
blas64.Vector{N: n - i - 1, Data: umat.Data[i*stride+i+1 : i*stride+n], Inc: 1},
blas64.Vector{N: n - i - 1, Data: work[i+1 : n], Inc: 1},
c, s)
}
}
c.updateCond(-1)
return true
}
// Compute rank-1 downdate.
alpha = math.Sqrt(-alpha)
if alpha != 1 {
blas64.Scal(alpha, blas64.Vector{N: n, Data: work, Inc: 1})
}
// Solve Uᵀ * p = x storing the result into work.
ok = lapack64.Trtrs(blas.Trans, c.chol.RawTriangular(), blas64.General{
Rows: n,
Cols: 1,
Stride: 1,
Data: work,
})
if !ok {
// The original matrix is singular. Should not happen, because
// the factorization is valid.
panic(badCholesky)
}
norm := blas64.Nrm2(blas64.Vector{N: n, Data: work, Inc: 1})
if norm >= 1 {
// The updated matrix is not positive definite.
return false
}
norm = math.Sqrt((1 + norm) * (1 - norm))
cos := getFloats(n, false)
defer putFloats(cos)
sin := getFloats(n, false)
defer putFloats(sin)
for i := n - 1; i >= 0; i-- {
// Compute parameters of Givens matrices that zero elements of p
// backwards.
cos[i], sin[i], norm, _ = blas64.Rotg(norm, work[i])
if norm < 0 {
norm *= -1
cos[i] *= -1
sin[i] *= -1
}
}
workMat := getWorkspaceTri(c.chol.mat.N, c.chol.triKind(), false)
defer putWorkspaceTri(workMat)
workMat.Copy(c.chol)
umat := workMat.mat
stride := workMat.mat.Stride
for i := n - 1; i >= 0; i-- {
work[i] = 0
// Apply Givens matrices to U.
blas64.Rot(
blas64.Vector{N: n - i, Data: work[i:n], Inc: 1},
blas64.Vector{N: n - i, Data: umat.Data[i*stride+i : i*stride+n], Inc: 1},
cos[i], sin[i])
if umat.Data[i*stride+i] == 0 {
// The matrix is singular (may rarely happen due to
// floating-point effects?).
ok = false
} else if umat.Data[i*stride+i] < 0 {
// Diagonal elements should be positive. If it happens
// that on the i-th row the diagonal is negative,
// multiply U from the left by an identity matrix that
// has -1 on the i-th row.
blas64.Scal(-1, blas64.Vector{N: n - i, Data: umat.Data[i*stride+i : i*stride+n], Inc: 1})
}
}
if ok {
c.chol.Copy(workMat)
c.updateCond(-1)
}
return ok
}
func (c *Cholesky) valid() bool {
return c.chol != nil && !c.chol.IsEmpty()
}
// BandCholesky is a symmetric positive-definite band matrix represented by its
// Cholesky decomposition.
//
// Note that this matrix representation is useful for certain operations, in
// particular finding solutions to linear equations. It is very inefficient at
// other operations, in particular At is slow.
//
// BandCholesky methods may only be called on a value that has been successfully
// initialized by a call to Factorize that has returned true. Calls to methods
// of an unsuccessful Cholesky factorization will panic.
type BandCholesky struct {
// The chol pointer must never be retained as a pointer outside the Cholesky
// struct, either by returning chol outside the struct or by setting it to
// a pointer coming from outside. The same prohibition applies to the data
// slice within chol.
chol *TriBandDense
cond float64
}
// Factorize calculates the Cholesky decomposition of the matrix A and returns
// whether the matrix is positive definite. If Factorize returns false, the
// factorization must not be used.
func (ch *BandCholesky) Factorize(a SymBanded) (ok bool) {
n, k := a.SymBand()
if ch.chol == nil {
ch.chol = NewTriBandDense(n, k, Upper, nil)
} else {
ch.chol.Reset()
ch.chol.ReuseAsTriBand(n, k, Upper)
}
copySymBandIntoTriBand(ch.chol, a)
cSym := blas64.SymmetricBand{
Uplo: blas.Upper,
N: n,
K: k,
Data: ch.chol.RawTriBand().Data,
Stride: ch.chol.RawTriBand().Stride,
}
_, ok = lapack64.Pbtrf(cSym)
if !ok {
ch.Reset()
return false
}
work := getFloats(3*n, false)
iwork := getInts(n, false)
aNorm := lapack64.Lansb(CondNorm, cSym, work)
ch.cond = 1 / lapack64.Pbcon(cSym, aNorm, work, iwork)
putInts(iwork)
putFloats(work)
return true
}
// SolveTo finds the matrix X that solves A * X = B where A is represented by
// the Cholesky decomposition. The result is stored in-place into dst.
// If the Cholesky decomposition is singular or near-singular a Condition error
// is returned. See the documentation for Condition for more information.
func (ch *BandCholesky) SolveTo(dst *Dense, b Matrix) error {
if !ch.valid() {
panic(badCholesky)
}
br, bc := b.Dims()
if br != ch.chol.mat.N {
panic(ErrShape)
}
dst.reuseAsNonZeroed(br, bc)
if b != dst {
dst.Copy(b)
}
lapack64.Pbtrs(ch.chol.mat, dst.mat)
if ch.cond > ConditionTolerance {
return Condition(ch.cond)
}
return nil
}
// SolveVecTo finds the vector x that solves A * x = b where A is represented by
// the Cholesky decomposition. The result is stored in-place into dst.
// If the Cholesky decomposition is singular or near-singular a Condition error
// is returned. See the documentation for Condition for more information.
func (ch *BandCholesky) SolveVecTo(dst *VecDense, b Vector) error {
if !ch.valid() {
panic(badCholesky)
}
n := ch.chol.mat.N
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
if b, ok := b.(RawVectorer); ok && dst != b {
dst.checkOverlap(b.RawVector())
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
lapack64.Pbtrs(ch.chol.mat, dst.asGeneral())
if ch.cond > ConditionTolerance {
return Condition(ch.cond)
}
return nil
}
// Cond returns the condition number of the factorized matrix.
func (ch *BandCholesky) Cond() float64 {
if !ch.valid() {
panic(badCholesky)
}
return ch.cond
}
// Reset resets the factorization so that it can be reused as the receiver of
// a dimensionally restricted operation.
func (ch *BandCholesky) Reset() {
if ch.chol != nil {
ch.chol.Reset()
}
ch.cond = math.Inf(1)
}
// Dims returns the dimensions of the matrix.
func (ch *BandCholesky) Dims() (r, c int) {
if !ch.valid() {
panic(badCholesky)
}
r, c = ch.chol.Dims()
return r, c
}
// At returns the element at row i, column j.
func (ch *BandCholesky) At(i, j int) float64 {
if !ch.valid() {
panic(badCholesky)
}
n, k, _ := ch.chol.TriBand()
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
if i > j {
i, j = j, i
}
if j-i > k {
return 0
}
var aij float64
for k := max(0, j-k); k <= i; k++ {
aij += ch.chol.at(k, i) * ch.chol.at(k, j)
}
return aij
}
// T returns the receiver, the transpose of a symmetric matrix.
func (ch *BandCholesky) T() Matrix {
return ch
}
// TBand returns the receiver, the transpose of a symmetric band matrix.
func (ch *BandCholesky) TBand() Banded {
return ch
}
// Symmetric implements the Symmetric interface and returns the number of rows
// in the matrix (this is also the number of columns).
func (ch *BandCholesky) Symmetric() int {
n, _ := ch.chol.Triangle()
return n
}
// Bandwidth returns the lower and upper bandwidth values for the matrix.
// The total bandwidth of the matrix is kl+ku+1.
func (ch *BandCholesky) Bandwidth() (kl, ku int) {
_, k, _ := ch.chol.TriBand()
return k, k
}
// SymBand returns the number of rows/columns in the matrix, and the size of the
// bandwidth. The total bandwidth of the matrix is 2*k+1.
func (ch *BandCholesky) SymBand() (n, k int) {
n, k, _ = ch.chol.TriBand()
return n, k
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for dimensionally restricted operations. The receiver can be emptied
// using Reset.
func (ch *BandCholesky) IsEmpty() bool {
return ch == nil || ch.chol.IsEmpty()
}
// Det returns the determinant of the matrix that has been factorized.
func (ch *BandCholesky) Det() float64 {
if !ch.valid() {
panic(badCholesky)
}
return math.Exp(ch.LogDet())
}
// LogDet returns the log of the determinant of the matrix that has been factorized.
func (ch *BandCholesky) LogDet() float64 {
if !ch.valid() {
panic(badCholesky)
}
var det float64
for i := 0; i < ch.chol.mat.N; i++ {
det += 2 * math.Log(ch.chol.mat.Data[i*ch.chol.mat.Stride])
}
return det
}
func (ch *BandCholesky) valid() bool {
return ch.chol != nil && !ch.chol.IsEmpty()
}