blob: 018bae213bed40ca4e871849c77c4189e69ee7e4 [file] [log] [blame]
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
math "gonum.org/v1/gonum/internal/math32"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/c64"
)
var _ blas.Complex64Level1 = Implementation{}
// Scasum returns the sum of the absolute values of the elements of x
// \sum_i |Re(x[i])| + |Im(x[i])|
// Scasum returns 0 if incX is negative.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Scasum(n int, x []complex64, incX int) float32 {
if n < 0 {
panic(nLT0)
}
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
var sum float32
if incX == 1 {
if len(x) < n {
panic(shortX)
}
for _, v := range x[:n] {
sum += scabs1(v)
}
return sum
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
for i := 0; i < n; i++ {
v := x[i*incX]
sum += scabs1(v)
}
return sum
}
// Scnrm2 computes the Euclidean norm of the complex vector x,
// ‖x‖_2 = sqrt(\sum_i x[i] * conj(x[i])).
// This function returns 0 if incX is negative.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Scnrm2(n int, x []complex64, incX int) float32 {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return 0
}
if n < 1 {
if n == 0 {
return 0
}
panic(nLT0)
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
var (
scale float32
ssq float32 = 1
)
if incX == 1 {
for _, v := range x[:n] {
re, im := math.Abs(real(v)), math.Abs(imag(v))
if re != 0 {
if re > scale {
ssq = 1 + ssq*(scale/re)*(scale/re)
scale = re
} else {
ssq += (re / scale) * (re / scale)
}
}
if im != 0 {
if im > scale {
ssq = 1 + ssq*(scale/im)*(scale/im)
scale = im
} else {
ssq += (im / scale) * (im / scale)
}
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(ssq)
}
for ix := 0; ix < n*incX; ix += incX {
re, im := math.Abs(real(x[ix])), math.Abs(imag(x[ix]))
if re != 0 {
if re > scale {
ssq = 1 + ssq*(scale/re)*(scale/re)
scale = re
} else {
ssq += (re / scale) * (re / scale)
}
}
if im != 0 {
if im > scale {
ssq = 1 + ssq*(scale/im)*(scale/im)
scale = im
} else {
ssq += (im / scale) * (im / scale)
}
}
}
if math.IsInf(scale, 1) {
return math.Inf(1)
}
return scale * math.Sqrt(ssq)
}
// Icamax returns the index of the first element of x having largest |Re(·)|+|Im(·)|.
// Icamax returns -1 if n is 0 or incX is negative.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Icamax(n int, x []complex64, incX int) int {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
// Return invalid index.
return -1
}
if n < 1 {
if n == 0 {
// Return invalid index.
return -1
}
panic(nLT0)
}
if len(x) <= (n-1)*incX {
panic(shortX)
}
idx := 0
max := scabs1(x[0])
if incX == 1 {
for i, v := range x[1:n] {
absV := scabs1(v)
if absV > max {
max = absV
idx = i + 1
}
}
return idx
}
ix := incX
for i := 1; i < n; i++ {
absV := scabs1(x[ix])
if absV > max {
max = absV
idx = i
}
ix += incX
}
return idx
}
// Caxpy adds alpha times x to y:
// y[i] += alpha * x[i] for all i
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Caxpy(n int, alpha complex64, x []complex64, incX int, y []complex64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if alpha == 0 {
return
}
if incX == 1 && incY == 1 {
c64.AxpyUnitary(alpha, x[:n], y[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (1 - n) * incX
}
if incY < 0 {
iy = (1 - n) * incY
}
c64.AxpyInc(alpha, x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Ccopy copies the vector x to vector y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Ccopy(n int, x []complex64, incX int, y []complex64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if incX == 1 && incY == 1 {
copy(y[:n], x[:n])
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
y[iy] = x[ix]
ix += incX
iy += incY
}
}
// Cdotc computes the dot product
// xᴴ · y
// of two complex vectors x and y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cdotc(n int, x []complex64, incX int, y []complex64, incY int) complex64 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return c64.DotcUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || (n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || (n-1)*incY >= len(y) {
panic(shortY)
}
return c64.DotcInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Cdotu computes the dot product
// xᵀ · y
// of two complex vectors x and y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cdotu(n int, x []complex64, incX int, y []complex64, incY int) complex64 {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n <= 0 {
if n == 0 {
return 0
}
panic(nLT0)
}
if incX == 1 && incY == 1 {
if len(x) < n {
panic(shortX)
}
if len(y) < n {
panic(shortY)
}
return c64.DotuUnitary(x[:n], y[:n])
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
if ix >= len(x) || (n-1)*incX >= len(x) {
panic(shortX)
}
if iy >= len(y) || (n-1)*incY >= len(y) {
panic(shortY)
}
return c64.DotuInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy))
}
// Csscal scales the vector x by a real scalar alpha.
// Csscal has no effect if incX < 0.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Csscal(n int, alpha float32, x []complex64, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
x = x[:n]
for i, v := range x {
x[i] = complex(alpha*real(v), alpha*imag(v))
}
return
}
for ix := 0; ix < n*incX; ix += incX {
v := x[ix]
x[ix] = complex(alpha*real(v), alpha*imag(v))
}
}
// Cscal scales the vector x by a complex scalar alpha.
// Cscal has no effect if incX < 0.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cscal(n int, alpha complex64, x []complex64, incX int) {
if incX < 1 {
if incX == 0 {
panic(zeroIncX)
}
return
}
if (n-1)*incX >= len(x) {
panic(shortX)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if alpha == 0 {
if incX == 1 {
x = x[:n]
for i := range x {
x[i] = 0
}
return
}
for ix := 0; ix < n*incX; ix += incX {
x[ix] = 0
}
return
}
if incX == 1 {
c64.ScalUnitary(alpha, x[:n])
return
}
c64.ScalInc(alpha, x, uintptr(n), uintptr(incX))
}
// Cswap exchanges the elements of two complex vectors x and y.
//
// Complex64 implementations are autogenerated and not directly tested.
func (Implementation) Cswap(n int, x []complex64, incX int, y []complex64, incY int) {
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if n < 1 {
if n == 0 {
return
}
panic(nLT0)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(shortX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(shortY)
}
if incX == 1 && incY == 1 {
x = x[:n]
for i, v := range x {
x[i], y[i] = y[i], v
}
return
}
var ix, iy int
if incX < 0 {
ix = (-n + 1) * incX
}
if incY < 0 {
iy = (-n + 1) * incY
}
for i := 0; i < n; i++ {
x[ix], y[iy] = y[iy], x[ix]
ix += incX
iy += incY
}
}