| // Copyright ©2019 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package integrate |
| |
| import "sort" |
| |
| // Simpsons returns an approximate value of the integral |
| // \int_a^b f(x)dx |
| // computed using the Simpsons's method. The function f is given as a slice of |
| // samples evaluated at locations in x, that is, |
| // f[i] = f(x[i]), x[0] = a, x[len(x)-1] = b |
| // The slice x must be sorted in strictly increasing order. x and f must be of |
| // equal length and the length must be at least 3. |
| // |
| // See https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule_for_irregularly_spaced_data |
| // for more information. |
| func Simpsons(x, f []float64) float64 { |
| n := len(x) |
| switch { |
| case len(f) != n: |
| panic("integrate: slice length mismatch") |
| case n < 3: |
| panic("integrate: input data too small") |
| case !sort.Float64sAreSorted(x): |
| panic("integrate: must be sorted") |
| } |
| |
| var integral float64 |
| for i := 1; i < n-1; i += 2 { |
| h0 := x[i] - x[i-1] |
| h1 := x[i+1] - x[i] |
| if h0 == 0 || h1 == 0 { |
| panic("integrate: repeated abscissa") |
| } |
| h0p2 := h0 * h0 |
| h0p3 := h0 * h0 * h0 |
| h1p2 := h1 * h1 |
| h1p3 := h1 * h1 * h1 |
| hph := h0 + h1 |
| a0 := (2*h0p3 - h1p3 + 3*h1*h0p2) / (6 * h0 * hph) |
| a1 := (h0p3 + h1p3 + 3*h0*h1*hph) / (6 * h0 * h1) |
| a2 := (-h0p3 + 2*h1p3 + 3*h0*h1p2) / (6 * h1 * hph) |
| integral += a0 * f[i-1] |
| integral += a1 * f[i] |
| integral += a2 * f[i+1] |
| } |
| |
| if n%2 == 0 { |
| h0 := x[n-2] - x[n-3] |
| h1 := x[n-1] - x[n-2] |
| if h0 == 0 || h1 == 0 { |
| panic("integrate: repeated abscissa") |
| } |
| h1p2 := h1 * h1 |
| h1p3 := h1 * h1 * h1 |
| hph := h0 + h1 |
| a0 := -1 * h1p3 / (6 * h0 * hph) |
| a1 := (h1p2 + 3*h0*h1) / (6 * h0) |
| a2 := (2*h1p2 + 3*h0*h1) / (6 * hph) |
| integral += a0 * f[n-3] |
| integral += a1 * f[n-2] |
| integral += a2 * f[n-1] |
| } |
| |
| return integral |
| } |