blob: f1bfe989ae07d8a907ef7c317b38363dbcb20c80 [file] [log] [blame]
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package barneshut
import (
"errors"
"fmt"
"math"
"gonum.org/v1/gonum/spatial/r3"
)
// Particle3 is a particle in a volume.
type Particle3 interface {
Coord3() r3.Vec
Mass() float64
}
// Force3 is a force modeling function for interactions between p1 and p2,
// m1 is the mass of p1 and m2 of p2. The vector v is the vector from p1 to
// p2. The returned value is the force vector acting on p1.
//
// In models where the identity of particles must be known, p1 and p2 may be
// compared. Force3 may be passed nil for p2 when the Barnes-Hut approximation
// is being used. A nil p2 indicates that the second mass center is an
// aggregate.
type Force3 func(p1, p2 Particle3, m1, m2 float64, v r3.Vec) r3.Vec
// Gravity3 returns a vector force on m1 by m2, equal to (m1⋅m2)/‖v‖²
// in the directions of v. Gravity3 ignores the identity of the interacting
// particles and returns a zero vector when the two particles are
// coincident, but performs no other sanity checks.
func Gravity3(_, _ Particle3, m1, m2 float64, v r3.Vec) r3.Vec {
d2 := v.X*v.X + v.Y*v.Y + v.Z*v.Z
if d2 == 0 {
return r3.Vec{}
}
return v.Scale((m1 * m2) / (d2 * math.Sqrt(d2)))
}
// Volume implements Barnes-Hut force approximation calculations.
type Volume struct {
root bucket
Particles []Particle3
}
// NewVolume returns a new Volume. If the volume is too large to allow
// particle coordinates to be distinguished due to floating point
// precision limits, NewVolume will return a non-nil error.
func NewVolume(p []Particle3) (*Volume, error) {
q := Volume{Particles: p}
err := q.Reset()
if err != nil {
return nil, err
}
return &q, nil
}
// Reset reconstructs the Barnes-Hut tree. Reset must be called if the
// Particles field or elements of Particles have been altered, unless
// ForceOn is called with theta=0 or no data structures have been
// previously built. If the volume is too large to allow particle
// coordinates to be distinguished due to floating point precision
// limits, Reset will return a non-nil error.
func (q *Volume) Reset() (err error) {
if len(q.Particles) == 0 {
q.root = bucket{}
return nil
}
q.root = bucket{
particle: q.Particles[0],
center: q.Particles[0].Coord3(),
mass: q.Particles[0].Mass(),
}
q.root.bounds.Min = q.root.center
q.root.bounds.Max = q.root.center
for _, e := range q.Particles[1:] {
c := e.Coord3()
if c.X < q.root.bounds.Min.X {
q.root.bounds.Min.X = c.X
}
if c.X > q.root.bounds.Max.X {
q.root.bounds.Max.X = c.X
}
if c.Y < q.root.bounds.Min.Y {
q.root.bounds.Min.Y = c.Y
}
if c.Y > q.root.bounds.Max.Y {
q.root.bounds.Max.Y = c.Y
}
if c.Z < q.root.bounds.Min.Z {
q.root.bounds.Min.Z = c.Z
}
if c.Z > q.root.bounds.Max.Z {
q.root.bounds.Max.Z = c.Z
}
}
defer func() {
switch r := recover(); r {
case nil:
case volumeTooBig:
err = volumeTooBig
default:
panic(r)
}
}()
// TODO(kortschak): Partially parallelise this by
// choosing the direction and using one of eight
// goroutines to work on each root octant.
for _, e := range q.Particles[1:] {
q.root.insert(e)
}
q.root.summarize()
return nil
}
var volumeTooBig = errors.New("barneshut: volume too big")
// ForceOn returns a force vector on p given p's mass and the force function, f,
// using the Barnes-Hut theta approximation parameter.
//
// Calls to f will include p in the p1 position and a non-nil p2 if the force
// interaction is with a non-aggregate mass center, otherwise p2 will be nil.
//
// It is safe to call ForceOn concurrently.
func (q *Volume) ForceOn(p Particle3, theta float64, f Force3) (force r3.Vec) {
var empty bucket
if theta > 0 && q.root != empty {
return q.root.forceOn(p, p.Coord3(), p.Mass(), theta, f)
}
// For the degenerate case, just iterate over the
// slice of particles rather than walking the tree.
var v r3.Vec
m := p.Mass()
pv := p.Coord3()
for _, e := range q.Particles {
v = v.Add(f(p, e, m, e.Mass(), e.Coord3().Sub(pv)))
}
return v
}
// bucket is an oct tree octant with Barnes-Hut extensions.
type bucket struct {
particle Particle3
bounds r3.Box
nodes [8]*bucket
center r3.Vec
mass float64
}
// insert inserts p into the subtree rooted at b.
func (b *bucket) insert(p Particle3) {
if b.particle == nil {
for _, q := range b.nodes {
if q != nil {
b.passDown(p)
return
}
}
b.particle = p
b.center = p.Coord3()
b.mass = p.Mass()
return
}
b.passDown(p)
b.passDown(b.particle)
b.particle = nil
b.center = r3.Vec{}
b.mass = 0
}
func (b *bucket) passDown(p Particle3) {
dir := octantOf(b.bounds, p)
if b.nodes[dir] == nil {
b.nodes[dir] = &bucket{bounds: splitVolume(b.bounds, dir)}
}
b.nodes[dir].insert(p)
}
const (
lne = iota
lse
lsw
lnw
une
use
usw
unw
)
// octantOf returns which octant of b that p should be placed in.
func octantOf(b r3.Box, p Particle3) int {
center := r3.Vec{
X: (b.Min.X + b.Max.X) / 2,
Y: (b.Min.Y + b.Max.Y) / 2,
Z: (b.Min.Z + b.Max.Z) / 2,
}
c := p.Coord3()
if checkBounds && (c.X < b.Min.X || b.Max.X < c.X || c.Y < b.Min.Y || b.Max.Y < c.Y || c.Z < b.Min.Z || b.Max.Z < c.Z) {
panic(fmt.Sprintf("p out of range %+v: %#v", b, p))
}
if c.X < center.X {
if c.Y < center.Y {
if c.Z < center.Z {
return lnw
} else {
return unw
}
} else {
if c.Z < center.Z {
return lsw
} else {
return usw
}
}
} else {
if c.Y < center.Y {
if c.Z < center.Z {
return lne
} else {
return une
}
} else {
if c.Z < center.Z {
return lse
} else {
return use
}
}
}
}
// splitVolume returns an octant subdivision of b in the given direction.
func splitVolume(b r3.Box, dir int) r3.Box {
old := b
halfX := (b.Max.X - b.Min.X) / 2
halfY := (b.Max.Y - b.Min.Y) / 2
halfZ := (b.Max.Z - b.Min.Z) / 2
switch dir {
case lne:
b.Min.X += halfX
b.Max.Y -= halfY
b.Max.Z -= halfZ
case lse:
b.Min.X += halfX
b.Min.Y += halfY
b.Max.Z -= halfZ
case lsw:
b.Max.X -= halfX
b.Min.Y += halfY
b.Max.Z -= halfZ
case lnw:
b.Max.X -= halfX
b.Max.Y -= halfY
b.Max.Z -= halfZ
case une:
b.Min.X += halfX
b.Max.Y -= halfY
b.Min.Z += halfZ
case use:
b.Min.X += halfX
b.Min.Y += halfY
b.Min.Z += halfZ
case usw:
b.Max.X -= halfX
b.Min.Y += halfY
b.Min.Z += halfZ
case unw:
b.Max.X -= halfX
b.Max.Y -= halfY
b.Min.Z += halfZ
}
if b == old {
panic(volumeTooBig)
}
return b
}
// summarize updates node masses and centers of mass.
func (b *bucket) summarize() (center r3.Vec, mass float64) {
for _, d := range &b.nodes {
if d == nil {
continue
}
c, m := d.summarize()
b.center.X += c.X * m
b.center.Y += c.Y * m
b.center.Z += c.Z * m
b.mass += m
}
b.center.X /= b.mass
b.center.Y /= b.mass
b.center.Z /= b.mass
return b.center, b.mass
}
// forceOn returns a force vector on p given p's mass m and the force
// calculation function, using the Barnes-Hut theta approximation parameter.
func (b *bucket) forceOn(p Particle3, pt r3.Vec, m, theta float64, f Force3) (vector r3.Vec) {
s := ((b.bounds.Max.X - b.bounds.Min.X) + (b.bounds.Max.Y - b.bounds.Min.Y) + (b.bounds.Max.Z - b.bounds.Min.Z)) / 3
d := math.Hypot(math.Hypot(pt.X-b.center.X, pt.Y-b.center.Y), pt.Z-b.center.Z)
if s/d < theta || b.particle != nil {
return f(p, b.particle, m, b.mass, b.center.Sub(pt))
}
var v r3.Vec
for _, d := range &b.nodes {
if d == nil {
continue
}
v = v.Add(d.forceOn(p, pt, m, theta, f))
}
return v
}