blob: 6aec9c07b58b838bb8cdd77f725a32e1998808bf [file] [log] [blame]
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package network
import (
"math"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/mat"
)
// Diffuse performs a heat diffusion across nodes of the undirected
// graph described by the given Laplacian using the initial heat distribution,
// h, according to the Laplacian with a diffusion time of t.
// The resulting heat distribution is returned, written into the map dst and
// returned,
// d = exp(-Lt)×h
// where L is the graph Laplacian. Indexing into h and dst is defined by the
// Laplacian Index field. If dst is nil, a new map is created.
//
// Nodes without corresponding entries in h are given an initial heat of zero,
// and entries in h without a corresponding node in the original graph are
// not altered when written to dst.
func Diffuse(dst, h map[int64]float64, by Laplacian, t float64) map[int64]float64 {
heat := make([]float64, len(by.Index))
for id, i := range by.Index {
heat[i] = h[id]
}
v := mat.NewVecDense(len(heat), heat)
var m, tl mat.Dense
tl.Scale(-t, by)
m.Exp(&tl)
v.MulVec(&m, v)
if dst == nil {
dst = make(map[int64]float64)
}
for i, n := range heat {
dst[by.Nodes[i].ID()] = n
}
return dst
}
// DiffuseToEquilibrium performs a heat diffusion across nodes of the
// graph described by the given Laplacian using the initial heat
// distribution, h, according to the Laplacian until the update function
// h_{n+1} = h_n - L×h_n
// results in a 2-norm update difference within tol, or iters updates have
// been made.
// The resulting heat distribution is returned as eq, written into the map dst,
// and a boolean indicating whether the equilibrium converged to within tol.
// Indexing into h and dst is defined by the Laplacian Index field. If dst
// is nil, a new map is created.
//
// Nodes without corresponding entries in h are given an initial heat of zero,
// and entries in h without a corresponding node in the original graph are
// not altered when written to dst.
func DiffuseToEquilibrium(dst, h map[int64]float64, by Laplacian, tol float64, iters int) (eq map[int64]float64, ok bool) {
heat := make([]float64, len(by.Index))
for id, i := range by.Index {
heat[i] = h[id]
}
v := mat.NewVecDense(len(heat), heat)
last := make([]float64, len(by.Index))
for id, i := range by.Index {
last[i] = h[id]
}
lastV := mat.NewVecDense(len(last), last)
var tmp mat.VecDense
for {
iters--
if iters < 0 {
break
}
lastV, v = v, lastV
tmp.MulVec(by.Matrix, lastV)
v.SubVec(lastV, &tmp)
if normDiff(heat, last) < tol {
ok = true
break
}
}
if dst == nil {
dst = make(map[int64]float64)
}
for i, n := range v.RawVector().Data {
dst[by.Nodes[i].ID()] = n
}
return dst, ok
}
// Laplacian is a graph Laplacian matrix.
type Laplacian struct {
// Matrix holds the Laplacian matrix.
mat.Matrix
// Nodes holds the input graph nodes.
Nodes []graph.Node
// Index is a mapping from the graph
// node IDs to row and column indices.
Index map[int64]int
}
// NewLaplacian returns a Laplacian matrix for the simple undirected graph g.
// The Laplacian is defined as D-A where D is a diagonal matrix holding the
// degree of each node and A is the graph adjacency matrix of the input graph.
// If g contains self edges, NewLaplacian will panic.
func NewLaplacian(g graph.Undirected) Laplacian {
nodes := graph.NodesOf(g.Nodes())
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewSymDense(len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := graph.NodesOf(g.From(uid))
l.SetSym(j, j, float64(len(to)))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
if uid < vid {
l.SetSym(indexOf[vid], j, -1)
}
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
// NewSymNormLaplacian returns a symmetric normalized Laplacian matrix for the
// simple undirected graph g.
// The normalized Laplacian is defined as I-D^(-1/2)AD^(-1/2) where D is a
// diagonal matrix holding the degree of each node and A is the graph adjacency
// matrix of the input graph.
// If g contains self edges, NewSymNormLaplacian will panic.
func NewSymNormLaplacian(g graph.Undirected) Laplacian {
nodes := graph.NodesOf(g.Nodes())
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewSymDense(len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := graph.NodesOf(g.From(uid))
if len(to) == 0 {
continue
}
l.SetSym(j, j, 1)
squdeg := math.Sqrt(float64(len(to)))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
if uid < vid {
l.SetSym(indexOf[vid], j, -1/(squdeg*math.Sqrt(float64(g.From(vid).Len()))))
}
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
// NewRandomWalkLaplacian returns a damp-scaled random walk Laplacian matrix for
// the simple graph g.
// The random walk Laplacian is defined as I-D^(-1)A where D is a diagonal matrix
// holding the degree of each node and A is the graph adjacency matrix of the input
// graph.
// If g contains self edges, NewRandomWalkLaplacian will panic.
func NewRandomWalkLaplacian(g graph.Graph, damp float64) Laplacian {
nodes := graph.NodesOf(g.Nodes())
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewDense(len(nodes), len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := graph.NodesOf(g.From(uid))
if len(to) == 0 {
continue
}
l.Set(j, j, 1-damp)
rudeg := (damp - 1) / float64(len(to))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
l.Set(indexOf[vid], j, rudeg)
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}