blob: 30c45956ac0a2dcc1912665ddc7de2f835690d0a [file] [log] [blame]
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"math/cmplx"
"testing"
"golang.org/x/exp/rand"
)
type Dlaln2er interface {
Dlaln2(trans bool, na, nw int, smin, ca float64, a []float64, lda int, d1, d2 float64, b []float64, ldb int, wr, wi float64, x []float64, ldx int) (scale, xnorm float64, ok bool)
}
func Dlaln2Test(t *testing.T, impl Dlaln2er) {
rnd := rand.New(rand.NewSource(1))
for _, trans := range []bool{true, false} {
for _, na := range []int{1, 2} {
for _, nw := range []int{1, 2} {
for _, extra := range []int{0, 1, 2, 13} {
for cas := 0; cas < 1000; cas++ {
testDlaln2(t, impl, trans, na, nw, extra, rnd)
}
}
}
}
}
}
func testDlaln2(t *testing.T, impl Dlaln2er, trans bool, na, nw, extra int, rnd *rand.Rand) {
const tol = 1e-11
// Generate random input scalars.
ca := rnd.NormFloat64()
d1 := rnd.NormFloat64()
d2 := rnd.NormFloat64()
var w complex128
if nw == 1 {
w = complex(rand.NormFloat64(), 0)
} else {
w = complex(rand.NormFloat64(), rand.NormFloat64())
}
smin := dlamchP * (math.Abs(real(w)) + math.Abs(imag(w)))
// Generate random input matrices.
a := randomGeneral(na, na, na+extra, rnd)
b := randomGeneral(na, nw, nw+extra, rnd)
x := randomGeneral(na, nw, nw+extra, rnd)
scale, xnormGot, ok := impl.Dlaln2(trans, na, nw, smin, ca, a.Data, a.Stride, d1, d2, b.Data, b.Stride, real(w), imag(w), x.Data, x.Stride)
prefix := fmt.Sprintf("Case trans=%t, na=%v, nw=%v, extra=%v", trans, na, nw, extra)
if !generalOutsideAllNaN(a) {
t.Errorf("%v: out-of-range write to A\n%v", prefix, a.Data)
}
if !generalOutsideAllNaN(b) {
t.Errorf("%v: out-of-range write to B\n%v", prefix, b.Data)
}
if !generalOutsideAllNaN(x) {
t.Errorf("%v: out-of-range write to X\n%v", prefix, x.Data)
}
// Scale is documented to be <= 1.
if scale <= 0 || 1 < scale {
t.Errorf("%v: invalid value of scale=%v", prefix, scale)
}
// Calculate the infinity norm of X explicitly.
var xnormWant float64
for i := 0; i < na; i++ {
var rowsum float64
for j := 0; j < nw; j++ {
rowsum += math.Abs(x.Data[i*x.Stride+j])
}
if rowsum > xnormWant {
xnormWant = rowsum
}
}
if xnormWant != xnormGot {
t.Errorf("Case %v: unexpected xnorm with scale=%v. Want %v, got %v", prefix, scale, xnormWant, xnormGot)
}
if !ok {
// If ok is false, the matrix has been perturbed but we don't
// know how. Return without comparing both sides of the
// equation.
return
}
// Compute a complex matrix
// M := ca * A - w * D
// or
// M := ca * Aᵀ - w * D.
m := make([]complex128, na*na)
if trans {
// M = ca * Aᵀ
for i := 0; i < na; i++ {
for j := 0; j < na; j++ {
m[i*na+j] = complex(ca*a.Data[j*a.Stride+i], 0)
}
}
} else {
// M = ca * Aᵀ
for i := 0; i < na; i++ {
for j := 0; j < na; j++ {
m[i*na+j] = complex(ca*a.Data[i*a.Stride+j], 0)
}
}
}
// Subtract the diagonal matrix w * D.
m[0] -= w * complex(d1, 0)
if na == 2 {
m[3] -= w * complex(d2, 0)
}
// Convert real na×2 matrices X and scale*B into complex na-vectors.
cx := make([]complex128, na)
cb := make([]complex128, na)
switch nw {
case 1:
for i := 0; i < na; i++ {
cx[i] = complex(x.Data[i*x.Stride], 0)
cb[i] = complex(scale*b.Data[i*x.Stride], 0)
}
case 2:
for i := 0; i < na; i++ {
cx[i] = complex(x.Data[i*x.Stride], x.Data[i*x.Stride+1])
cb[i] = complex(scale*b.Data[i*b.Stride], scale*b.Data[i*b.Stride+1])
}
}
// Compute M * X.
mx := make([]complex128, na)
for i := 0; i < na; i++ {
for j := 0; j < na; j++ {
mx[i] += m[i*na+j] * cx[j]
}
}
// Check whether |M * X - scale * B|_max <= tol.
for i := 0; i < na; i++ {
if cmplx.Abs(mx[i]-cb[i]) > tol {
t.Errorf("Case %v: unexpected value of left-hand side at row %v with scale=%v. Want %v, got %v", prefix, i, scale, cb[i], mx[i])
}
}
}