blob: d271d9a5044e9276a592a5606cc3e5d1e73147be [file] [log] [blame] [edit]
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"fmt"
"math"
"reflect"
"strings"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
)
func asBasicMatrix(d *Dense) Matrix { return (*basicMatrix)(d) }
func asBasicSymmetric(s *SymDense) Matrix { return (*basicSymmetric)(s) }
func asBasicTriangular(t *TriDense) Triangular { return (*basicTriangular)(t) }
func asBasicBanded(b *BandDense) Banded { return (*basicBanded)(b) }
func asBasicSymBanded(s *SymBandDense) SymBanded { return (*basicSymBanded)(s) }
func asBasicTriBanded(t *TriBandDense) TriBanded { return (*basicTriBanded)(t) }
func asBasicDiagonal(d *DiagDense) Diagonal { return (*basicDiagonal)(d) }
func TestNewDense(t *testing.T) {
for i, test := range []struct {
a []float64
rows, cols int
min, max float64
fro float64
mat *Dense
}{
{
[]float64{
0, 0, 0,
0, 0, 0,
0, 0, 0,
},
3, 3,
0, 0,
0,
&Dense{
mat: blas64.General{
Rows: 3, Cols: 3,
Stride: 3,
Data: []float64{0, 0, 0, 0, 0, 0, 0, 0, 0},
},
capRows: 3, capCols: 3,
},
},
{
[]float64{
1, 1, 1,
1, 1, 1,
1, 1, 1,
},
3, 3,
1, 1,
3,
&Dense{
mat: blas64.General{
Rows: 3, Cols: 3,
Stride: 3,
Data: []float64{1, 1, 1, 1, 1, 1, 1, 1, 1},
},
capRows: 3, capCols: 3,
},
},
{
[]float64{
1, 0, 0,
0, 1, 0,
0, 0, 1,
},
3, 3,
0, 1,
1.7320508075688772,
&Dense{
mat: blas64.General{
Rows: 3, Cols: 3,
Stride: 3,
Data: []float64{1, 0, 0, 0, 1, 0, 0, 0, 1},
},
capRows: 3, capCols: 3,
},
},
{
[]float64{
-1, 0, 0,
0, -1, 0,
0, 0, -1,
},
3, 3,
-1, 0,
1.7320508075688772,
&Dense{
mat: blas64.General{
Rows: 3, Cols: 3,
Stride: 3,
Data: []float64{-1, 0, 0, 0, -1, 0, 0, 0, -1},
},
capRows: 3, capCols: 3,
},
},
{
[]float64{
1, 2, 3,
4, 5, 6,
},
2, 3,
1, 6,
9.539392014169458,
&Dense{
mat: blas64.General{
Rows: 2, Cols: 3,
Stride: 3,
Data: []float64{1, 2, 3, 4, 5, 6},
},
capRows: 2, capCols: 3,
},
},
{
[]float64{
1, 2,
3, 4,
5, 6,
},
3, 2,
1, 6,
9.539392014169458,
&Dense{
mat: blas64.General{
Rows: 3, Cols: 2,
Stride: 2,
Data: []float64{1, 2, 3, 4, 5, 6},
},
capRows: 3, capCols: 2,
},
},
} {
m := NewDense(test.rows, test.cols, test.a)
rows, cols := m.Dims()
if rows != test.rows {
t.Errorf("unexpected number of rows for test %d: got: %d want: %d", i, rows, test.rows)
}
if cols != test.cols {
t.Errorf("unexpected number of cols for test %d: got: %d want: %d", i, cols, test.cols)
}
if min := Min(m); min != test.min {
t.Errorf("unexpected min for test %d: got: %v want: %v", i, min, test.min)
}
if max := Max(m); max != test.max {
t.Errorf("unexpected max for test %d: got: %v want: %v", i, max, test.max)
}
if fro := Norm(m, 2); math.Abs(Norm(m, 2)-test.fro) > 1e-14 {
t.Errorf("unexpected Frobenius norm for test %d: got: %v want: %v", i, fro, test.fro)
}
if !reflect.DeepEqual(m, test.mat) {
t.Errorf("unexpected matrix for test %d", i)
}
if !Equal(m, test.mat) {
t.Errorf("matrix does not equal expected matrix for test %d", i)
}
}
}
func TestDenseAtSet(t *testing.T) {
for test, af := range [][][]float64{
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, // even
{{1, 2}, {4, 5}, {7, 8}}, // wide
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, //skinny
} {
m := NewDense(flatten(af))
rows, cols := m.Dims()
for i := 0; i < rows; i++ {
for j := 0; j < cols; j++ {
if m.At(i, j) != af[i][j] {
t.Errorf("unexpected value for At(%d, %d) for test %d: got: %v want: %v",
i, j, test, m.At(i, j), af[i][j])
}
v := float64(i * j)
m.Set(i, j, v)
if m.At(i, j) != v {
t.Errorf("unexpected value for At(%d, %d) after Set(%[1]d, %d, %v) for test %d: got: %v want: %[3]v",
i, j, v, test, m.At(i, j))
}
}
}
// Check access out of bounds fails
for _, row := range []int{-1, rows, rows + 1} {
panicked, message := panics(func() { m.At(row, 0) })
if !panicked || message != ErrRowAccess.Error() {
t.Errorf("expected panic for invalid row access N=%d r=%d", rows, row)
}
}
for _, col := range []int{-1, cols, cols + 1} {
panicked, message := panics(func() { m.At(0, col) })
if !panicked || message != ErrColAccess.Error() {
t.Errorf("expected panic for invalid column access N=%d c=%d", cols, col)
}
}
// Check Set out of bounds
for _, row := range []int{-1, rows, rows + 1} {
panicked, message := panics(func() { m.Set(row, 0, 1.2) })
if !panicked || message != ErrRowAccess.Error() {
t.Errorf("expected panic for invalid row access N=%d r=%d", rows, row)
}
}
for _, col := range []int{-1, cols, cols + 1} {
panicked, message := panics(func() { m.Set(0, col, 1.2) })
if !panicked || message != ErrColAccess.Error() {
t.Errorf("expected panic for invalid column access N=%d c=%d", cols, col)
}
}
}
}
func TestDenseSetRowColumn(t *testing.T) {
for _, as := range [][][]float64{
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}},
{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}},
} {
for ri, row := range as {
a := NewDense(flatten(as))
m := &Dense{}
m.CloneFrom(a)
a.SetRow(ri, make([]float64, a.mat.Cols))
m.Sub(m, a)
nt := Norm(m, 2)
nr := floats.Norm(row, 2)
if math.Abs(nt-nr) > 1e-14 {
t.Errorf("Row %d norm mismatch, want: %g, got: %g", ri, nr, nt)
}
}
for ci := range as[0] {
a := NewDense(flatten(as))
m := &Dense{}
m.CloneFrom(a)
a.SetCol(ci, make([]float64, a.mat.Rows))
col := make([]float64, a.mat.Rows)
for j := range col {
col[j] = float64(ci + 1 + j*a.mat.Cols)
}
m.Sub(m, a)
nt := Norm(m, 2)
nc := floats.Norm(col, 2)
if math.Abs(nt-nc) > 1e-14 {
t.Errorf("Column %d norm mismatch, want: %g, got: %g", ci, nc, nt)
}
}
}
}
func TestDenseZero(t *testing.T) {
// Elements that equal 1 should be set to zero, elements that equal -1
// should remain unchanged.
for _, test := range []*Dense{
{
mat: blas64.General{
Rows: 4,
Cols: 3,
Stride: 5,
Data: []float64{
1, 1, 1, -1, -1,
1, 1, 1, -1, -1,
1, 1, 1, -1, -1,
1, 1, 1, -1, -1,
},
},
},
} {
dataCopy := make([]float64, len(test.mat.Data))
copy(dataCopy, test.mat.Data)
test.Zero()
for i, v := range test.mat.Data {
if dataCopy[i] != -1 && v != 0 {
t.Errorf("Matrix not zeroed in bounds")
}
if dataCopy[i] == -1 && v != -1 {
t.Errorf("Matrix zeroed out of bounds")
}
}
}
}
func TestDenseRowColView(t *testing.T) {
for _, test := range []struct {
mat [][]float64
}{
{
mat: [][]float64{
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},
{16, 17, 18, 19, 20},
{21, 22, 23, 24, 25},
},
},
{
mat: [][]float64{
{1, 2, 3, 4},
{6, 7, 8, 9},
{11, 12, 13, 14},
{16, 17, 18, 19},
{21, 22, 23, 24},
},
},
{
mat: [][]float64{
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},
{16, 17, 18, 19, 20},
},
},
} {
// This over cautious approach to building a matrix data
// slice is to ensure that changes to flatten in the future
// do not mask a regression to the issue identified in
// gonum/matrix#110.
rows, cols, flat := flatten(test.mat)
m := NewDense(rows, cols, flat[:len(flat):len(flat)])
for _, row := range []int{-1, rows, rows + 1} {
panicked, message := panics(func() { m.At(row, 0) })
if !panicked || message != ErrRowAccess.Error() {
t.Errorf("expected panic for invalid row access rows=%d r=%d", rows, row)
}
}
for _, col := range []int{-1, cols, cols + 1} {
panicked, message := panics(func() { m.At(0, col) })
if !panicked || message != ErrColAccess.Error() {
t.Errorf("expected panic for invalid column access cols=%d c=%d", cols, col)
}
}
for i := 0; i < rows; i++ {
vr := m.RowView(i)
if vr.Len() != cols {
t.Errorf("unexpected number of columns: got: %d want: %d", vr.Len(), cols)
}
for j := 0; j < cols; j++ {
if got := vr.At(j, 0); got != test.mat[i][j] {
t.Errorf("unexpected value for row.At(%d, 0): got: %v want: %v",
j, got, test.mat[i][j])
}
}
}
for j := 0; j < cols; j++ {
vc := m.ColView(j)
if vc.Len() != rows {
t.Errorf("unexpected number of rows: got: %d want: %d", vc.Len(), rows)
}
for i := 0; i < rows; i++ {
if got := vc.At(i, 0); got != test.mat[i][j] {
t.Errorf("unexpected value for col.At(%d, 0): got: %v want: %v",
i, got, test.mat[i][j])
}
}
}
m = m.Slice(1, rows-1, 1, cols-1).(*Dense)
for i := 1; i < rows-1; i++ {
vr := m.RowView(i - 1)
if vr.Len() != cols-2 {
t.Errorf("unexpected number of columns: got: %d want: %d", vr.Len(), cols-2)
}
for j := 1; j < cols-1; j++ {
if got := vr.At(j-1, 0); got != test.mat[i][j] {
t.Errorf("unexpected value for row.At(%d, 0): got: %v want: %v",
j-1, got, test.mat[i][j])
}
}
}
for j := 1; j < cols-1; j++ {
vc := m.ColView(j - 1)
if vc.Len() != rows-2 {
t.Errorf("unexpected number of rows: got: %d want: %d", vc.Len(), rows-2)
}
for i := 1; i < rows-1; i++ {
if got := vc.At(i-1, 0); got != test.mat[i][j] {
t.Errorf("unexpected value for col.At(%d, 0): got: %v want: %v",
i-1, got, test.mat[i][j])
}
}
}
}
}
func TestDenseDiagView(t *testing.T) {
for cas, test := range []*Dense{
NewDense(1, 1, []float64{1}),
NewDense(2, 2, []float64{1, 2, 3, 4}),
NewDense(3, 4, []float64{
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
}),
NewDense(4, 3, []float64{
1, 2, 3,
4, 5, 6,
7, 8, 9,
10, 11, 12,
}),
} {
testDiagView(t, cas, test)
}
}
func TestDenseGrow(t *testing.T) {
m := &Dense{}
m = m.Grow(10, 10).(*Dense)
rows, cols := m.Dims()
capRows, capCols := m.Caps()
if rows != 10 {
t.Errorf("unexpected value for rows: got: %d want: 10", rows)
}
if cols != 10 {
t.Errorf("unexpected value for cols: got: %d want: 10", cols)
}
if capRows != 10 {
t.Errorf("unexpected value for capRows: got: %d want: 10", capRows)
}
if capCols != 10 {
t.Errorf("unexpected value for capCols: got: %d want: 10", capCols)
}
// Test grow within caps is in-place.
m.Set(1, 1, 1)
v := m.Slice(1, 5, 1, 5).(*Dense)
if v.At(0, 0) != m.At(1, 1) {
t.Errorf("unexpected viewed element value: got: %v want: %v", v.At(0, 0), m.At(1, 1))
}
v = v.Grow(5, 5).(*Dense)
if !Equal(v, m.Slice(1, 10, 1, 10)) {
t.Error("unexpected view value after grow")
}
// Test grow bigger than caps copies.
v = v.Grow(5, 5).(*Dense)
if !Equal(v.Slice(0, 9, 0, 9), m.Slice(1, 10, 1, 10)) {
t.Error("unexpected mismatched common view value after grow")
}
v.Set(0, 0, 0)
if Equal(v.Slice(0, 9, 0, 9), m.Slice(1, 10, 1, 10)) {
t.Error("unexpected matching view value after grow past capacity")
}
// Test grow uses existing data slice when matrix is zero size.
v.Reset()
p, l := &v.mat.Data[:1][0], cap(v.mat.Data)
*p = 1 // This element is at position (-1, -1) relative to v and so should not be visible.
v = v.Grow(5, 5).(*Dense)
if &v.mat.Data[:1][0] != p {
t.Error("grow unexpectedly copied slice within cap limit")
}
if cap(v.mat.Data) != l {
t.Errorf("unexpected change in data slice capacity: got: %d want: %d", cap(v.mat.Data), l)
}
if v.At(0, 0) != 0 {
t.Errorf("unexpected value for At(0, 0): got: %v want: 0", v.At(0, 0))
}
}
func TestDenseAdd(t *testing.T) {
for i, test := range []struct {
a, b, r [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{2, 2, 2}, {2, 2, 2}, {2, 2, 2}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{2, 0, 0}, {0, 2, 0}, {0, 0, 2}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-2, 0, 0}, {0, -2, 0}, {0, 0, -2}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{2, 4, 6}, {8, 10, 12}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
r := NewDense(flatten(test.r))
var temp Dense
temp.Add(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from Add for test %d %v Add %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
zero(temp.mat.Data)
temp.Add(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from Add for test %d %v Add %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
// These probably warrant a better check and failure. They should never happen in the wild though.
temp.mat.Data = nil
panicked, message := panics(func() { temp.Add(a, b) })
if !panicked || !strings.HasPrefix(message, "runtime error: index out of range") {
t.Error("exected runtime panic for nil data slice")
}
a.Add(a, b)
if !Equal(a, r) {
t.Errorf("unexpected result from Add for test %d %v Add %v: got: %v want: %v",
i, test.a, test.b, unflatten(a.mat.Rows, a.mat.Cols, a.mat.Data), test.r)
}
}
panicked, message := panics(func() {
m := NewDense(10, 10, nil)
a := NewDense(5, 5, nil)
m.Slice(1, 6, 1, 6).(*Dense).Add(a, m.Slice(2, 7, 2, 7))
})
if !panicked {
t.Error("expected panic for overlapping matrices")
}
if message != regionOverlap {
t.Errorf("unexpected panic message: got: %q want: %q", message, regionOverlap)
}
method := func(receiver, a, b Matrix) {
type Adder interface {
Add(a, b Matrix)
}
rd := receiver.(Adder)
rd.Add(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.Add(a, b)
}
testTwoInput(t, "Add", &Dense{}, method, denseComparison, legalTypesAll, legalSizeSameRectangular, 1e-14)
}
func TestDenseSub(t *testing.T) {
for i, test := range []struct {
a, b, r [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{0, 0, 0}, {0, 0, 0}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
r := NewDense(flatten(test.r))
var temp Dense
temp.Sub(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from Sub for test %d %v Sub %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
zero(temp.mat.Data)
temp.Sub(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from Sub for test %d %v Sub %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
// These probably warrant a better check and failure. They should never happen in the wild though.
temp.mat.Data = nil
panicked, message := panics(func() { temp.Sub(a, b) })
if !panicked || !strings.HasPrefix(message, "runtime error: index out of range") {
t.Error("exected runtime panic for nil data slice")
}
a.Sub(a, b)
if !Equal(a, r) {
t.Errorf("unexpected result from Sub for test %d %v Sub %v: got: %v want: %v",
i, test.a, test.b, unflatten(a.mat.Rows, a.mat.Cols, a.mat.Data), test.r)
}
}
panicked, message := panics(func() {
m := NewDense(10, 10, nil)
a := NewDense(5, 5, nil)
m.Slice(1, 6, 1, 6).(*Dense).Sub(a, m.Slice(2, 7, 2, 7))
})
if !panicked {
t.Error("expected panic for overlapping matrices")
}
if message != regionOverlap {
t.Errorf("unexpected panic message: got: %q want: %q", message, regionOverlap)
}
method := func(receiver, a, b Matrix) {
type Suber interface {
Sub(a, b Matrix)
}
rd := receiver.(Suber)
rd.Sub(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.Sub(a, b)
}
testTwoInput(t, "Sub", &Dense{}, method, denseComparison, legalTypesAll, legalSizeSameRectangular, 1e-14)
}
func TestDenseMulElem(t *testing.T) {
for i, test := range []struct {
a, b, r [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 4, 9}, {16, 25, 36}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
r := NewDense(flatten(test.r))
var temp Dense
temp.MulElem(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from MulElem for test %d %v MulElem %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
zero(temp.mat.Data)
temp.MulElem(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from MulElem for test %d %v MulElem %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
// These probably warrant a better check and failure. They should never happen in the wild though.
temp.mat.Data = nil
panicked, message := panics(func() { temp.MulElem(a, b) })
if !panicked || !strings.HasPrefix(message, "runtime error: index out of range") {
t.Error("exected runtime panic for nil data slice")
}
a.MulElem(a, b)
if !Equal(a, r) {
t.Errorf("unexpected result from MulElem for test %d %v MulElem %v: got: %v want: %v",
i, test.a, test.b, unflatten(a.mat.Rows, a.mat.Cols, a.mat.Data), test.r)
}
}
panicked, message := panics(func() {
m := NewDense(10, 10, nil)
a := NewDense(5, 5, nil)
m.Slice(1, 6, 1, 6).(*Dense).MulElem(a, m.Slice(2, 7, 2, 7))
})
if !panicked {
t.Error("expected panic for overlapping matrices")
}
if message != regionOverlap {
t.Errorf("unexpected panic message: got: %q want: %q", message, regionOverlap)
}
method := func(receiver, a, b Matrix) {
type ElemMuler interface {
MulElem(a, b Matrix)
}
rd := receiver.(ElemMuler)
rd.MulElem(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.MulElem(a, b)
}
testTwoInput(t, "MulElem", &Dense{}, method, denseComparison, legalTypesAll, legalSizeSameRectangular, 1e-14)
}
// A comparison that treats NaNs as equal, for testing.
func (m *Dense) same(b Matrix) bool {
br, bc := b.Dims()
if br != m.mat.Rows || bc != m.mat.Cols {
return false
}
for r := 0; r < br; r++ {
for c := 0; c < bc; c++ {
if av, bv := m.At(r, c), b.At(r, c); av != bv && !(math.IsNaN(av) && math.IsNaN(bv)) {
return false
}
}
}
return true
}
func TestDenseDivElem(t *testing.T) {
for i, test := range []struct {
a, b, r [][]float64
}{
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{math.Inf(1), math.NaN(), math.NaN()}, {math.NaN(), math.Inf(1), math.NaN()}, {math.NaN(), math.NaN(), math.Inf(1)}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, math.NaN(), math.NaN()}, {math.NaN(), 1, math.NaN()}, {math.NaN(), math.NaN(), 1}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{1, math.NaN(), math.NaN()}, {math.NaN(), 1, math.NaN()}, {math.NaN(), math.NaN(), 1}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 1, 1}, {1, 1, 1}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
r := NewDense(flatten(test.r))
var temp Dense
temp.DivElem(a, b)
if !temp.same(r) {
t.Errorf("unexpected result from DivElem for test %d %v DivElem %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
zero(temp.mat.Data)
temp.DivElem(a, b)
if !temp.same(r) {
t.Errorf("unexpected result from DivElem for test %d %v DivElem %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
// These probably warrant a better check and failure. They should never happen in the wild though.
temp.mat.Data = nil
panicked, message := panics(func() { temp.DivElem(a, b) })
if !panicked || !strings.HasPrefix(message, "runtime error: index out of range") {
t.Error("exected runtime panic for nil data slice")
}
a.DivElem(a, b)
if !a.same(r) {
t.Errorf("unexpected result from DivElem for test %d %v DivElem %v: got: %v want: %v",
i, test.a, test.b, unflatten(a.mat.Rows, a.mat.Cols, a.mat.Data), test.r)
}
}
panicked, message := panics(func() {
m := NewDense(10, 10, nil)
a := NewDense(5, 5, nil)
m.Slice(1, 6, 1, 6).(*Dense).DivElem(a, m.Slice(2, 7, 2, 7))
})
if !panicked {
t.Error("expected panic for overlapping matrices")
}
if message != regionOverlap {
t.Errorf("unexpected panic message: got: %q want: %q", message, regionOverlap)
}
method := func(receiver, a, b Matrix) {
type ElemDiver interface {
DivElem(a, b Matrix)
}
rd := receiver.(ElemDiver)
rd.DivElem(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.DivElem(a, b)
}
testTwoInput(t, "DivElem", &Dense{}, method, denseComparison, legalTypesAll, legalSizeSameRectangular, 1e-14)
}
func TestDenseMul(t *testing.T) {
for i, test := range []struct {
a, b, r [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{3, 3, 3}, {3, 3, 3}, {3, 3, 3}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 2}, {3, 4}, {5, 6}},
[][]float64{{22, 28}, {49, 64}},
},
{
[][]float64{{0, 1, 1}, {0, 1, 1}, {0, 1, 1}},
[][]float64{{0, 1, 1}, {0, 1, 1}, {0, 1, 1}},
[][]float64{{0, 2, 2}, {0, 2, 2}, {0, 2, 2}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
r := NewDense(flatten(test.r))
var temp Dense
temp.Mul(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from Mul for test %d %v Mul %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
zero(temp.mat.Data)
temp.Mul(a, b)
if !Equal(&temp, r) {
t.Errorf("unexpected result from Mul for test %d %v Mul %v: got: %v want: %v",
i, test.a, test.b, unflatten(temp.mat.Rows, temp.mat.Cols, temp.mat.Data), test.r)
}
// These probably warrant a better check and failure. They should never happen in the wild though.
temp.mat.Data = nil
panicked, message := panics(func() { temp.Mul(a, b) })
if !panicked || message != "blas: insufficient length of c" {
if message != "" {
t.Errorf("expected runtime panic for nil data slice: got %q", message)
} else {
t.Error("expected runtime panic for nil data slice")
}
}
}
panicked, message := panics(func() {
m := NewDense(10, 10, nil)
a := NewDense(5, 5, nil)
m.Slice(1, 6, 1, 6).(*Dense).Mul(a, m.Slice(2, 7, 2, 7))
})
if !panicked {
t.Error("expected panic for overlapping matrices")
}
if message != regionOverlap {
t.Errorf("unexpected panic message: got: %q want: %q", message, regionOverlap)
}
method := func(receiver, a, b Matrix) {
type Muler interface {
Mul(a, b Matrix)
}
rd := receiver.(Muler)
rd.Mul(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.Mul(a, b)
}
legalSizeMul := func(ar, ac, br, bc int) bool {
return ac == br
}
testTwoInput(t, "Mul", &Dense{}, method, denseComparison, legalTypesAll, legalSizeMul, 1e-14)
}
func randDense(size int, rho float64, rnd func() float64) (*Dense, error) {
if size == 0 {
return nil, ErrZeroLength
}
d := &Dense{
mat: blas64.General{
Rows: size, Cols: size, Stride: size,
Data: make([]float64, size*size),
},
capRows: size, capCols: size,
}
for i := 0; i < size; i++ {
for j := 0; j < size; j++ {
if rand.Float64() < rho {
d.Set(i, j, rnd())
}
}
}
return d, nil
}
func TestDenseExp(t *testing.T) {
for i, test := range []struct {
a [][]float64
want [][]float64
mod func(*Dense)
}{
// Expected values obtained from scipy.linalg.expm with the equivalent numpy.array.
{
a: [][]float64{{-49, 24}, {-64, 31}},
want: [][]float64{{-0.735758758144758, 0.551819099658100}, {-1.471517599088267, 1.103638240715576}},
},
{
a: [][]float64{{-49, 24}, {-64, 31}},
want: [][]float64{{-0.735758758144758, 0.551819099658100}, {-1.471517599088267, 1.103638240715576}},
mod: func(a *Dense) {
d := make([]float64, 100)
for i := range d {
d[i] = math.NaN()
}
*a = *NewDense(10, 10, d).Slice(1, 3, 1, 3).(*Dense)
},
},
{
a: [][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
want: [][]float64{{2.71828182845905, 0, 0}, {0, 2.71828182845905, 0}, {0, 0, 2.71828182845905}},
},
{
a: [][]float64{
{-200, 100, 100, 0},
{100, -200, 0, 100},
{100, 0, -200, 100},
{0, 100, 100, -200},
},
want: [][]float64{
{0.25, 0.25, 0.25, 0.25},
{0.25, 0.25, 0.25, 0.25},
{0.25, 0.25, 0.25, 0.25},
{0.25, 0.25, 0.25, 0.25},
},
},
} {
var got Dense
if test.mod != nil {
test.mod(&got)
}
got.Exp(NewDense(flatten(test.a)))
want := NewDense(flatten(test.want))
if !EqualApprox(&got, want, 1e-14) {
t.Errorf("unexpected result for Exp test %d\ngot:\n%v\nwant:\n%v",
i, Formatted(&got), Formatted(want))
}
}
}
func TestDensePow(t *testing.T) {
for i, test := range []struct {
a [][]float64
n int
mod func(*Dense)
want [][]float64
}{
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 0,
want: [][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 0,
want: [][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
mod: func(a *Dense) {
d := make([]float64, 100)
for i := range d {
d[i] = math.NaN()
}
*a = *NewDense(10, 10, d).Slice(1, 4, 1, 4).(*Dense)
},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 1,
want: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 1,
want: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
mod: func(a *Dense) {
d := make([]float64, 100)
for i := range d {
d[i] = math.NaN()
}
*a = *NewDense(10, 10, d).Slice(1, 4, 1, 4).(*Dense)
},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 2,
want: [][]float64{{30, 36, 42}, {66, 81, 96}, {102, 126, 150}},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 2,
want: [][]float64{{30, 36, 42}, {66, 81, 96}, {102, 126, 150}},
mod: func(a *Dense) {
d := make([]float64, 100)
for i := range d {
d[i] = math.NaN()
}
*a = *NewDense(10, 10, d).Slice(1, 4, 1, 4).(*Dense)
},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 3,
want: [][]float64{{468, 576, 684}, {1062, 1305, 1548}, {1656, 2034, 2412}},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
n: 3,
want: [][]float64{{468, 576, 684}, {1062, 1305, 1548}, {1656, 2034, 2412}},
mod: func(a *Dense) {
d := make([]float64, 100)
for i := range d {
d[i] = math.NaN()
}
*a = *NewDense(10, 10, d).Slice(1, 4, 1, 4).(*Dense)
},
},
} {
var got Dense
if test.mod != nil {
test.mod(&got)
}
got.Pow(NewDense(flatten(test.a)), test.n)
if !EqualApprox(&got, NewDense(flatten(test.want)), 1e-12) {
t.Errorf("unexpected result for Pow test %d", i)
}
}
}
func TestDenseScale(t *testing.T) {
for _, f := range []float64{0.5, 1, 3} {
method := func(receiver, a Matrix) {
type Scaler interface {
Scale(f float64, a Matrix)
}
rd := receiver.(Scaler)
rd.Scale(f, a)
}
denseComparison := func(receiver, a *Dense) {
receiver.Scale(f, a)
}
testOneInput(t, "Scale", &Dense{}, method, denseComparison, isAnyType, isAnySize, 1e-14)
}
}
func TestDensePowN(t *testing.T) {
for i, test := range []struct {
a [][]float64
mod func(*Dense)
}{
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
},
{
a: [][]float64{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
mod: func(a *Dense) {
d := make([]float64, 100)
for i := range d {
d[i] = math.NaN()
}
*a = *NewDense(10, 10, d).Slice(1, 4, 1, 4).(*Dense)
},
},
} {
for n := 1; n <= 14; n++ {
var got, want Dense
if test.mod != nil {
test.mod(&got)
}
got.Pow(NewDense(flatten(test.a)), n)
want.iterativePow(NewDense(flatten(test.a)), n)
if !Equal(&got, &want) {
t.Errorf("unexpected result for iterative Pow test %d", i)
}
}
}
}
func (m *Dense) iterativePow(a Matrix, n int) {
m.CloneFrom(a)
for i := 1; i < n; i++ {
m.Mul(m, a)
}
}
func TestDenseCloneT(t *testing.T) {
for i, test := range []struct {
a, want [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 4}, {2, 5}, {3, 6}},
},
} {
a := NewDense(flatten(test.a))
want := NewDense(flatten(test.want))
var got, gotT Dense
for j := 0; j < 2; j++ {
got.CloneFrom(a.T())
if !Equal(&got, want) {
t.Errorf("expected transpose for test %d iteration %d: %v transpose = %v",
i, j, test.a, test.want)
}
gotT.CloneFrom(got.T())
if !Equal(&gotT, a) {
t.Errorf("expected transpose for test %d iteration %d: %v transpose = %v",
i, j, test.a, test.want)
}
zero(got.mat.Data)
}
}
}
func TestDenseCopyT(t *testing.T) {
for i, test := range []struct {
a, want [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 4}, {2, 5}, {3, 6}},
},
} {
a := NewDense(flatten(test.a))
want := NewDense(flatten(test.want))
ar, ac := a.Dims()
got := NewDense(ac, ar, nil)
rr := NewDense(ar, ac, nil)
for j := 0; j < 2; j++ {
got.Copy(a.T())
if !Equal(got, want) {
t.Errorf("expected transpose for test %d iteration %d: %v transpose = %v",
i, j, test.a, test.want)
}
rr.Copy(got.T())
if !Equal(rr, a) {
t.Errorf("expected transpose for test %d iteration %d: %v transpose = %v",
i, j, test.a, test.want)
}
zero(got.mat.Data)
}
}
}
func TestDenseCopyDenseAlias(t *testing.T) {
for _, trans := range []bool{false, true} {
for di := 0; di < 2; di++ {
for dj := 0; dj < 2; dj++ {
for si := 0; si < 2; si++ {
for sj := 0; sj < 2; sj++ {
a := NewDense(3, 3, []float64{
1, 2, 3,
4, 5, 6,
7, 8, 9,
})
src := a.Slice(si, si+2, sj, sj+2)
want := DenseCopyOf(src)
got := a.Slice(di, di+2, dj, dj+2).(*Dense)
if trans {
panicked, _ := panics(func() { got.Copy(src.T()) })
if !panicked {
t.Errorf("expected panic for transpose aliased copy with offsets dst(%d,%d) src(%d,%d):\ngot:\n%v\nwant:\n%v",
di, dj, si, sj, Formatted(got), Formatted(want),
)
}
continue
}
got.Copy(src)
if !Equal(got, want) {
t.Errorf("unexpected aliased copy result with offsets dst(%d,%d) src(%d,%d):\ngot:\n%v\nwant:\n%v",
di, dj, si, sj, Formatted(got), Formatted(want),
)
}
}
}
}
}
}
}
func TestDenseCopyVecDenseAlias(t *testing.T) {
for _, horiz := range []bool{false, true} {
for do := 0; do < 2; do++ {
for di := 0; di < 3; di++ {
for si := 0; si < 3; si++ {
a := NewDense(3, 3, []float64{
1, 2, 3,
4, 5, 6,
7, 8, 9,
})
var src Vector
var want *Dense
if horiz {
src = a.RowView(si)
want = DenseCopyOf(a.Slice(si, si+1, 0, 2))
} else {
src = a.ColView(si)
want = DenseCopyOf(a.Slice(0, 2, si, si+1))
}
var got *Dense
if horiz {
got = a.Slice(di, di+1, do, do+2).(*Dense)
got.Copy(src.T())
} else {
got = a.Slice(do, do+2, di, di+1).(*Dense)
got.Copy(src)
}
if !Equal(got, want) {
t.Errorf("unexpected aliased copy result with offsets dst(%d) src(%d):\ngot:\n%v\nwant:\n%v",
di, si, Formatted(got), Formatted(want),
)
}
}
}
}
}
}
func identity(r, c int, v float64) float64 { return v }
func TestDenseApply(t *testing.T) {
for i, test := range []struct {
a, want [][]float64
fn func(r, c int, v float64) float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
identity,
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
identity,
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
identity,
},
{
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
[][]float64{{-1, 0, 0}, {0, -1, 0}, {0, 0, -1}},
identity,
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{1, 2, 3}, {4, 5, 6}},
identity,
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{2, 4, 6}, {8, 10, 12}},
func(r, c int, v float64) float64 { return v * 2 },
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{0, 2, 0}, {0, 5, 0}},
func(r, c int, v float64) float64 {
if c == 1 {
return v
}
return 0
},
},
{
[][]float64{{1, 2, 3}, {4, 5, 6}},
[][]float64{{0, 0, 0}, {4, 5, 6}},
func(r, c int, v float64) float64 {
if r == 1 {
return v
}
return 0
},
},
} {
a := NewDense(flatten(test.a))
want := NewDense(flatten(test.want))
var got Dense
for j := 0; j < 2; j++ {
got.Apply(test.fn, a)
if !Equal(&got, want) {
t.Errorf("unexpected result for test %d iteration %d: got: %v want: %v", i, j, got.mat.Data, want.mat.Data)
}
}
}
for _, fn := range []func(r, c int, v float64) float64{
identity,
func(r, c int, v float64) float64 {
if r < c {
return v
}
return -v
},
func(r, c int, v float64) float64 {
if r%2 == 0 && c%2 == 0 {
return v
}
return -v
},
func(_, _ int, v float64) float64 { return v * v },
func(_, _ int, v float64) float64 { return -v },
} {
method := func(receiver, x Matrix) {
type Applier interface {
Apply(func(r, c int, v float64) float64, Matrix)
}
rd := receiver.(Applier)
rd.Apply(fn, x)
}
denseComparison := func(receiver, x *Dense) {
receiver.Apply(fn, x)
}
testOneInput(t, "Apply", &Dense{}, method, denseComparison, isAnyType, isAnySize, 0)
}
}
func TestDenseClone(t *testing.T) {
for i, test := range []struct {
a [][]float64
i, j int
v float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
1, 1,
1,
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
0, 0,
0,
},
} {
a := NewDense(flatten(test.a))
b := *a
a.CloneFrom(a)
a.Set(test.i, test.j, test.v)
if Equal(&b, a) {
t.Errorf("unexpected mirror of write to cloned matrix for test %d: %v cloned and altered = %v",
i, a, &b)
}
}
}
// TODO(kortschak) Roll this into testOneInput when it exists.
func TestDenseCopyPanic(t *testing.T) {
for _, a := range []*Dense{
{},
{mat: blas64.General{Rows: 1}},
{mat: blas64.General{Cols: 1}},
} {
var rows, cols int
m := NewDense(1, 1, nil)
panicked, message := panics(func() { rows, cols = m.Copy(a) })
if panicked {
t.Errorf("unexpected panic: %v", message)
}
if rows != 0 {
t.Errorf("unexpected rows: got: %d want: 0", rows)
}
if cols != 0 {
t.Errorf("unexpected cols: got: %d want: 0", cols)
}
}
}
func TestDenseStack(t *testing.T) {
for i, test := range []struct {
a, b, e [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{0, 1, 0}, {0, 0, 1}, {1, 0, 0}},
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
var s Dense
s.Stack(a, b)
if !Equal(&s, NewDense(flatten(test.e))) {
t.Errorf("unexpected result for Stack test %d: %v stack %v = %v", i, a, b, s)
}
}
method := func(receiver, a, b Matrix) {
type Stacker interface {
Stack(a, b Matrix)
}
rd := receiver.(Stacker)
rd.Stack(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.Stack(a, b)
}
testTwoInput(t, "Stack", &Dense{}, method, denseComparison, legalTypesAll, legalSizeSameWidth, 0)
}
func TestDenseAugment(t *testing.T) {
for i, test := range []struct {
a, b, e [][]float64
}{
{
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
[][]float64{{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}},
},
{
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1}, {1, 1, 1}, {1, 1, 1}},
[][]float64{{1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1}},
},
{
[][]float64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}},
[][]float64{{0, 1, 0}, {0, 0, 1}, {1, 0, 0}},
[][]float64{{1, 0, 0, 0, 1, 0}, {0, 1, 0, 0, 0, 1}, {0, 0, 1, 1, 0, 0}},
},
} {
a := NewDense(flatten(test.a))
b := NewDense(flatten(test.b))
var s Dense
s.Augment(a, b)
if !Equal(&s, NewDense(flatten(test.e))) {
t.Errorf("unexpected result for Augment test %d: %v augment %v = %v", i, a, b, s)
}
}
method := func(receiver, a, b Matrix) {
type Augmenter interface {
Augment(a, b Matrix)
}
rd := receiver.(Augmenter)
rd.Augment(a, b)
}
denseComparison := func(receiver, a, b *Dense) {
receiver.Augment(a, b)
}
testTwoInput(t, "Augment", &Dense{}, method, denseComparison, legalTypesAll, legalSizeSameHeight, 0)
}
func TestDenseRankOne(t *testing.T) {
for i, test := range []struct {
x []float64
y []float64
m [][]float64
alpha float64
}{
{
x: []float64{5},
y: []float64{10},
m: [][]float64{{2}},
alpha: -3,
},
{
x: []float64{5, 6, 1},
y: []float64{10},
m: [][]float64{{2}, {-3}, {5}},
alpha: -3,
},
{
x: []float64{5},
y: []float64{10, 15, 8},
m: [][]float64{{2, -3, 5}},
alpha: -3,
},
{
x: []float64{1, 5},
y: []float64{10, 15},
m: [][]float64{
{2, -3},
{4, -1},
},
alpha: -3,
},
{
x: []float64{2, 3, 9},
y: []float64{8, 9},
m: [][]float64{
{2, 3},
{4, 5},
{6, 7},
},
alpha: -3,
},
{
x: []float64{2, 3},
y: []float64{8, 9, 9},
m: [][]float64{
{2, 3, 6},
{4, 5, 7},
},
alpha: -3,
},
} {
want := &Dense{}
xm := NewDense(len(test.x), 1, test.x)
ym := NewDense(1, len(test.y), test.y)
want.Mul(xm, ym)
want.Scale(test.alpha, want)
want.Add(want, NewDense(flatten(test.m)))
a := NewDense(flatten(test.m))
m := &Dense{}
// Check with a new matrix
m.RankOne(a, test.alpha, NewVecDense(len(test.x), test.x), NewVecDense(len(test.y), test.y))
if !Equal(m, want) {
t.Errorf("unexpected result for RankOne test %d iteration 0: got: %+v want: %+v", i, m, want)
}
// Check with the same matrix
a.RankOne(a, test.alpha, NewVecDense(len(test.x), test.x), NewVecDense(len(test.y), test.y))
if !Equal(a, want) {
t.Errorf("unexpected result for RankOne test %d iteration 1: got: %+v want: %+v", i, m, want)
}
}
}
func TestDenseOuter(t *testing.T) {
for i, test := range []struct {
x []float64
y []float64
}{
{
x: []float64{5},
y: []float64{10},
},
{
x: []float64{5, 6, 1},
y: []float64{10},
},
{
x: []float64{5},
y: []float64{10, 15, 8},
},
{
x: []float64{1, 5},
y: []float64{10, 15},
},
{
x: []float64{2, 3, 9},
y: []float64{8, 9},
},
{
x: []float64{2, 3},
y: []float64{8, 9, 9},
},
} {
for _, f := range []float64{0.5, 1, 3} {
want := &Dense{}
xm := NewDense(len(test.x), 1, test.x)
ym := NewDense(1, len(test.y), test.y)
want.Mul(xm, ym)
want.Scale(f, want)
var m Dense
for j := 0; j < 2; j++ {
// Check with a new matrix - and then again.
m.Outer(f, NewVecDense(len(test.x), test.x), NewVecDense(len(test.y), test.y))
if !Equal(&m, want) {
t.Errorf("unexpected result for Outer test %d iteration %d scale %v: got: %+v want: %+v", i, j, f, m, want)
}
}
}
}
for _, alpha := range []float64{0, 1, -1, 2.3, -2.3} {
method := func(receiver, x, y Matrix) {
type outerer interface {
Outer(alpha float64, x, y Vector)
}
m := receiver.(outerer)
m.Outer(alpha, x.(Vector), y.(Vector))
}
denseComparison := func(receiver, x, y *Dense) {
receiver.Mul(x, y.T())
receiver.Scale(alpha, receiver)
}
testTwoInput(t, "Outer", &Dense{}, method, denseComparison, legalTypesVectorVector, legalSizeVector, 1e-12)
}
}
func TestDenseInverse(t *testing.T) {
for i, test := range []struct {
a Matrix
want Matrix // nil indicates that a is singular.
tol float64
}{
{
a: NewDense(3, 3, []float64{
8, 1, 6,
3, 5, 7,
4, 9, 2,
}),
want: NewDense(3, 3, []float64{
0.147222222222222, -0.144444444444444, 0.063888888888889,
-0.061111111111111, 0.022222222222222, 0.105555555555556,
-0.019444444444444, 0.188888888888889, -0.102777777777778,
}),
tol: 1e-14,
},
{
a: NewDense(3, 3, []float64{
8, 1, 6,
3, 5, 7,
4, 9, 2,
}).T(),
want: NewDense(3, 3, []float64{
0.147222222222222, -0.144444444444444, 0.063888888888889,
-0.061111111111111, 0.022222222222222, 0.105555555555556,
-0.019444444444444, 0.188888888888889, -0.102777777777778,
}).T(),
tol: 1e-14,
},
// This case does not fail, but we do not guarantee that. The success
// is because the receiver and the input are aligned in the call to
// inverse. If there was a misalignment, the result would likely be
// incorrect and no shadowing panic would occur.
{
a: asBasicMatrix(NewDense(3, 3, []float64{
8, 1, 6,
3, 5, 7,
4, 9, 2,
})),
want: NewDense(3, 3, []float64{
0.147222222222222, -0.144444444444444, 0.063888888888889,
-0.061111111111111, 0.022222222222222, 0.105555555555556,
-0.019444444444444, 0.188888888888889, -0.102777777777778,
}),
tol: 1e-14,
},
// The following case fails as it does not follow the shadowing rules.
// Specifically, the test extracts the underlying *Dense, and uses
// it as a receiver with the basicMatrix as input. The basicMatrix type
// allows shadowing of the input data without providing the Raw method
// required for detection of shadowing.
//
// We specifically state we do not check this case.
//
// {
// a: asBasicMatrix(NewDense(3, 3, []float64{
// 8, 1, 6,
// 3, 5, 7,
// 4, 9, 2,
// })).T(),
// want: NewDense(3, 3, []float64{
// 0.147222222222222, -0.144444444444444, 0.063888888888889,
// -0.061111111111111, 0.022222222222222, 0.105555555555556,
// -0.019444444444444, 0.188888888888889, -0.102777777777778,
// }).T(),
// tol: 1e-14,
// },
{
a: NewDense(4, 4, []float64{
5, 2, 8, 7,
4, 5, 8, 2,
8, 5, 3, 2,
8, 7, 7, 5,
}),
want: NewDense(4, 4, []float64{
0.100548446069470, 0.021937842778793, 0.334552102376599, -0.283363802559415,
-0.226691042047532, -0.067641681901280, -0.281535648994515, 0.457038391224863,
0.080438756855576, 0.217550274223035, 0.067641681901280, -0.226691042047532,
0.043875685557587, -0.244972577696527, -0.235831809872029, 0.330895795246801,
}),
tol: 1e-14,
},
// Tests with singular matrix.
{
a: NewDense(1, 1, []float64{
0,
}),
},
{
a: NewDense(2, 2, []float64{
0, 0,
0, 0,
}),
},
{
a: NewDense(2, 2, []float64{
0, 0,
0, 1,
}),
},
{
a: NewDense(3, 3, []float64{
0, 0, 0,
0, 0, 0,
0, 0, 0,
}),
},
{
a: NewDense(4, 4, []float64{
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
}),
},
{
a: NewDense(4, 4, []float64{
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 20, 20,
0, 0, 20, 20,
}),
},
{
a: NewDense(4, 4, []float64{
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
0, 0, 0, 0,
}),
},
{
a: NewDense(4, 4, []float64{
1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
}),
},
{
a: NewDense(5, 5, []float64{
0, 1, 0, 0, 0,
4, 0, 2, 0, 0,
0, 3, 0, 3, 0,
0, 0, 2, 0, 4,
0, 0, 0, 1, 0,
}),
},
{
a: NewDense(5, 5, []float64{
4, -1, -1, -1, -1,
-1, 4, -1, -1, -1,
-1, -1, 4, -1, -1,
-1, -1, -1, 4, -1,
-1, -1, -1, -1, 4,
}),
},
{
a: NewDense(5, 5, []float64{
2, -1, 0, 0, -1,
-1, 2, -1, 0, 0,
0, -1, 2, -1, 0,
0, 0, -1, 2, -1,
-1, 0, 0, -1, 2,
}),
},
{
a: NewDense(5, 5, []float64{
1, 2, 3, 5, 8,
2, 3, 5, 8, 13,
3, 5, 8, 13, 21,
5, 8, 13, 21, 34,
8, 13, 21, 34, 55,
}),
},
{
a: NewDense(8, 8, []float64{
611, 196, -192, 407, -8, -52, -49, 29,
196, 899, 113, -192, -71, -43, -8, -44,
-192, 113, 899, 196, 61, 49, 8, 52,
407, -192, 196, 611, 8, 44, 59, -23,
-8, -71, 61, 8, 411, -599, 208, 208,
-52, -43, 49, 44, -599, 411, 208, 208,
-49, -8, 8, 59, 208, 208, 99, -911,
29, -44, 52, -23, 208, 208, -911, 99,
}),
},
} {
var got Dense
err := got.Inverse(test.a)
if test.want == nil {
if err == nil {
t.Errorf("Case %d: expected error for singular matrix", i)
}
continue
}
if err != nil {
t.Errorf("Case %d: unexpected error: %v", i, err)
continue
}
if !equalApprox(&got, test.want, test.tol, false) {
t.Errorf("Case %d, inverse mismatch.", i)
}
var m Dense
m.Mul(&got, test.a)
r, _ := test.a.Dims()
d := make([]float64, r*r)
for i := 0; i < r*r; i += r + 1 {
d[i] = 1
}
eye := NewDense(r, r, d)
if !equalApprox(eye, &m, 1e-14, false) {
t.Errorf("Case %d, A^-1 * A != I", i)
}
var tmp Dense
tmp.CloneFrom(test.a)
aU, transposed := untranspose(test.a)
if transposed {
switch aU := aU.(type) {
case *Dense:
err = aU.Inverse(test.a)
case *basicMatrix:
err = (*Dense)(aU).Inverse(test.a)
default:
continue
}
m.Mul(aU, &tmp)
} else {
switch a := test.a.(type) {
case *Dense:
err = a.Inverse(test.a)
m.Mul(a, &tmp)
case *basicMatrix:
err = (*Dense)(a).Inverse(test.a)
m.Mul(a, &tmp)
default:
continue
}
}
if err != nil {
t.Errorf("Error computing inverse: %v", err)
}
if !equalApprox(eye, &m, 1e-14, false) {
t.Errorf("Case %d, A^-1 * A != I", i)
fmt.Println(Formatted(&m))
}
}
}
var (
wd *Dense
)
func BenchmarkMulDense100Half(b *testing.B) { denseMulBench(b, 100, 0.5) }
func BenchmarkMulDense100Tenth(b *testing.B) { denseMulBench(b, 100, 0.1) }
func BenchmarkMulDense1000Half(b *testing.B) { denseMulBench(b, 1000, 0.5) }
func BenchmarkMulDense1000Tenth(b *testing.B) { denseMulBench(b, 1000, 0.1) }
func BenchmarkMulDense1000Hundredth(b *testing.B) { denseMulBench(b, 1000, 0.01) }
func BenchmarkMulDense1000Thousandth(b *testing.B) { denseMulBench(b, 1000, 0.001) }
func denseMulBench(b *testing.B, size int, rho float64) {
b.StopTimer()
a, _ := randDense(size, rho, rand.NormFloat64)
d, _ := randDense(size, rho, rand.NormFloat64)
b.StartTimer()
for i := 0; i < b.N; i++ {
var n Dense
n.Mul(a, d)
wd = &n
}
}
func BenchmarkPreMulDense100Half(b *testing.B) { densePreMulBench(b, 100, 0.5) }
func BenchmarkPreMulDense100Tenth(b *testing.B) { densePreMulBench(b, 100, 0.1) }
func BenchmarkPreMulDense1000Half(b *testing.B) { densePreMulBench(b, 1000, 0.5) }
func BenchmarkPreMulDense1000Tenth(b *testing.B) { densePreMulBench(b, 1000, 0.1) }
func BenchmarkPreMulDense1000Hundredth(b *testing.B) { densePreMulBench(b, 1000, 0.01) }
func BenchmarkPreMulDense1000Thousandth(b *testing.B) { densePreMulBench(b, 1000, 0.001) }
func densePreMulBench(b *testing.B, size int, rho float64) {
b.StopTimer()
a, _ := randDense(size, rho, rand.NormFloat64)
d, _ := randDense(size, rho, rand.NormFloat64)
wd = NewDense(size, size, nil)
b.StartTimer()
for i := 0; i < b.N; i++ {
wd.Mul(a, d)
}
}
func BenchmarkDenseRow10(b *testing.B) { rowDenseBench(b, 10) }
func BenchmarkDenseRow100(b *testing.B) { rowDenseBench(b, 100) }
func BenchmarkDenseRow1000(b *testing.B) { rowDenseBench(b, 1000) }
func rowDenseBench(b *testing.B, size int) {
a, _ := randDense(size, 1, rand.NormFloat64)
_, c := a.Dims()
dst := make([]float64, c)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Row(dst, 0, a)
}
}
func BenchmarkDenseExp10(b *testing.B) { expDenseBench(b, 10) }
func BenchmarkDenseExp100(b *testing.B) { expDenseBench(b, 100) }
func BenchmarkDenseExp1000(b *testing.B) { expDenseBench(b, 1000) }
func expDenseBench(b *testing.B, size int) {
a, _ := randDense(size, 1, rand.NormFloat64)
b.ResetTimer()
var m Dense
for i := 0; i < b.N; i++ {
m.Exp(a)
}
}
func BenchmarkDensePow10_3(b *testing.B) { powDenseBench(b, 10, 3) }
func BenchmarkDensePow100_3(b *testing.B) { powDenseBench(b, 100, 3) }
func BenchmarkDensePow1000_3(b *testing.B) { powDenseBench(b, 1000, 3) }
func BenchmarkDensePow10_4(b *testing.B) { powDenseBench(b, 10, 4) }
func BenchmarkDensePow100_4(b *testing.B) { powDenseBench(b, 100, 4) }
func BenchmarkDensePow1000_4(b *testing.B) { powDenseBench(b, 1000, 4) }
func BenchmarkDensePow10_5(b *testing.B) { powDenseBench(b, 10, 5) }
func BenchmarkDensePow100_5(b *testing.B) { powDenseBench(b, 100, 5) }
func BenchmarkDensePow1000_5(b *testing.B) { powDenseBench(b, 1000, 5) }
func BenchmarkDensePow10_6(b *testing.B) { powDenseBench(b, 10, 6) }
func BenchmarkDensePow100_6(b *testing.B) { powDenseBench(b, 100, 6) }
func BenchmarkDensePow1000_6(b *testing.B) { powDenseBench(b, 1000, 6) }
func BenchmarkDensePow10_7(b *testing.B) { powDenseBench(b, 10, 7) }
func BenchmarkDensePow100_7(b *testing.B) { powDenseBench(b, 100, 7) }
func BenchmarkDensePow1000_7(b *testing.B) { powDenseBench(b, 1000, 7) }
func BenchmarkDensePow10_8(b *testing.B) { powDenseBench(b, 10, 8) }
func BenchmarkDensePow100_8(b *testing.B) { powDenseBench(b, 100, 8) }
func BenchmarkDensePow1000_8(b *testing.B) { powDenseBench(b, 1000, 8) }
func BenchmarkDensePow10_9(b *testing.B) { powDenseBench(b, 10, 9) }
func BenchmarkDensePow100_9(b *testing.B) { powDenseBench(b, 100, 9) }
func BenchmarkDensePow1000_9(b *testing.B) { powDenseBench(b, 1000, 9) }
func powDenseBench(b *testing.B, size, n int) {
a, _ := randDense(size, 1, rand.NormFloat64)
b.ResetTimer()
var m Dense
for i := 0; i < b.N; i++ {
m.Pow(a, n)
}
}
func BenchmarkDenseMulTransDense100Half(b *testing.B) { denseMulTransBench(b, 100, 0.5) }
func BenchmarkDenseMulTransDense100Tenth(b *testing.B) { denseMulTransBench(b, 100, 0.1) }
func BenchmarkDenseMulTransDense1000Half(b *testing.B) { denseMulTransBench(b, 1000, 0.5) }
func BenchmarkDenseMulTransDense1000Tenth(b *testing.B) { denseMulTransBench(b, 1000, 0.1) }
func BenchmarkDenseMulTransDense1000Hundredth(b *testing.B) { denseMulTransBench(b, 1000, 0.01) }
func BenchmarkDenseMulTransDense1000Thousandth(b *testing.B) { denseMulTransBench(b, 1000, 0.001) }
func denseMulTransBench(b *testing.B, size int, rho float64) {
b.StopTimer()
a, _ := randDense(size, rho, rand.NormFloat64)
d, _ := randDense(size, rho, rand.NormFloat64)
b.StartTimer()
for i := 0; i < b.N; i++ {
var n Dense
n.Mul(a, d.T())
wd = &n
}
}
func BenchmarkDenseMulTransDenseSym100Half(b *testing.B) { denseMulTransSymBench(b, 100, 0.5) }
func BenchmarkDenseMulTransDenseSym100Tenth(b *testing.B) { denseMulTransSymBench(b, 100, 0.1) }
func BenchmarkDenseMulTransDenseSym1000Half(b *testing.B) { denseMulTransSymBench(b, 1000, 0.5) }
func BenchmarkDenseMulTransDenseSym1000Tenth(b *testing.B) { denseMulTransSymBench(b, 1000, 0.1) }
func BenchmarkDenseMulTransDenseSym1000Hundredth(b *testing.B) { denseMulTransSymBench(b, 1000, 0.01) }
func BenchmarkDenseMulTransDenseSym1000Thousandth(b *testing.B) { denseMulTransSymBench(b, 1000, 0.001) }
func denseMulTransSymBench(b *testing.B, size int, rho float64) {
b.StopTimer()
a, _ := randDense(size, rho, rand.NormFloat64)
b.StartTimer()
for i := 0; i < b.N; i++ {
var n Dense
n.Mul(a, a.T())
wd = &n
}
}
func BenchmarkDenseSum1000(b *testing.B) { denseSumBench(b, 1000) }
var denseSumForBench float64
func denseSumBench(b *testing.B, size int) {
a, _ := randDense(size, 1.0, rand.NormFloat64)
b.ResetTimer()
for i := 0; i < b.N; i++ {
denseSumForBench = Sum(a)
}
}