blob: 19add6fac97acc264baa85a0d8a52bc6f3f3eedb [file] [log] [blame]
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"math"
"slices"
"sort"
)
// ROC returns paired false positive rate (FPR) and true positive rate
// (TPR) values corresponding to cutoff points on the receiver operator
// characteristic (ROC) curve obtained when y is treated as a binary
// classifier for classes with weights. The cutoff thresholds used to
// calculate the ROC are returned in thresh such that tpr[i] and fpr[i]
// are the true and false positive rates for y >= thresh[i].
//
// The input y and cutoffs must be sorted, and values in y must correspond
// to values in classes and weights. SortWeightedLabeled can be used to
// sort y together with classes and weights.
//
// For a given cutoff value, observations corresponding to entries in y
// greater than the cutoff value are classified as true, while those
// less than or equal to the cutoff value are classified as false. These
// assigned class labels are compared with the true values in the classes
// slice and used to calculate the FPR and TPR.
//
// If weights is nil, all weights are treated as 1. If weights is not nil
// it must have the same length as y and classes, otherwise ROC will panic.
//
// If cutoffs is nil or empty, all possible cutoffs are calculated,
// resulting in fpr and tpr having length one greater than the number of
// unique values in y. Otherwise fpr and tpr will be returned with the
// same length as cutoffs. floats.Span can be used to generate equally
// spaced cutoffs.
//
// More details about ROC curves are available at
// https://en.wikipedia.org/wiki/Receiver_operating_characteristic
func ROC(cutoffs, y []float64, classes []bool, weights []float64) (tpr, fpr, thresh []float64) {
if len(y) != len(classes) {
panic("stat: slice length mismatch")
}
if weights != nil && len(y) != len(weights) {
panic("stat: slice length mismatch")
}
if !sort.Float64sAreSorted(y) {
panic("stat: input must be sorted ascending")
}
if !sort.Float64sAreSorted(cutoffs) {
panic("stat: cutoff values must be sorted ascending")
}
if len(y) == 0 {
return nil, nil, nil
}
if len(cutoffs) == 0 {
if cutoffs == nil || cap(cutoffs) < len(y)+1 {
cutoffs = make([]float64, len(y)+1)
} else {
cutoffs = cutoffs[:len(y)+1]
}
// Choose all possible cutoffs for unique values in y.
bin := 0
cutoffs[bin] = y[0]
for i, u := range y[1:] {
if u == y[i] {
continue
}
bin++
cutoffs[bin] = u
}
cutoffs[bin+1] = math.Inf(1)
cutoffs = cutoffs[:bin+2]
} else {
// Don't mutate the provided cutoffs.
tmp := cutoffs
cutoffs = make([]float64, len(cutoffs))
copy(cutoffs, tmp)
}
tpr = make([]float64, len(cutoffs))
fpr = make([]float64, len(cutoffs))
var bin int
var nPos, nNeg float64
for i, u := range classes {
// Update the bin until it matches the next y value
// skipping empty bins.
for bin < len(cutoffs)-1 && y[i] >= cutoffs[bin] {
bin++
tpr[bin] = tpr[bin-1]
fpr[bin] = fpr[bin-1]
}
posWeight, negWeight := 1.0, 0.0
if weights != nil {
posWeight = weights[i]
}
if !u {
posWeight, negWeight = negWeight, posWeight
}
nPos += posWeight
nNeg += negWeight
// Count false negatives (in tpr) and true negatives (in fpr).
if y[i] < cutoffs[bin] {
tpr[bin] += posWeight
fpr[bin] += negWeight
}
}
invNeg := 1 / nNeg
invPos := 1 / nPos
// Convert negative counts to TPR and FPR.
// Bins beyond the maximum value in y are skipped
// leaving these fpr and tpr elements as zero.
for i := range tpr[:bin+1] {
// Prevent fused float operations by
// making explicit float64 conversions.
tpr[i] = 1 - float64(tpr[i]*invPos)
fpr[i] = 1 - float64(fpr[i]*invNeg)
}
slices.Reverse(tpr)
slices.Reverse(fpr)
slices.Reverse(cutoffs)
return tpr, fpr, cutoffs
}
// TOC returns the Total Operating Characteristic for the classes provided
// and the minimum and maximum bounds for the TOC.
//
// The input y values that correspond to classes and weights must be sorted
// in ascending order. classes[i] is the class of value y[i] and weights[i]
// is the weight of y[i]. SortWeightedLabeled can be used to sort classes
// together with weights by the rank variable, i+1.
//
// The returned ntp values can be interpreted as the number of true positives
// where values above the given rank are assigned class true for each given
// rank from 1 to len(classes).
//
// ntp_i = sum_{j ≥ len(ntp)-1 - i} [ classes_j ] * weights_j, where [x] = 1 if x else 0.
//
// The values of min and max provide the minimum and maximum possible number
// of false values for the set of classes. The first element of ntp, min and
// max are always zero as this corresponds to assigning all data class false
// and the last elements are always weighted sum of classes as this corresponds
// to assigning every data class true. For len(classes) != 0, the lengths of
// min, ntp and max are len(classes)+1.
//
// If weights is nil, all weights are treated as 1. When weights are not nil,
// the calculation of min and max allows for partial assignment of single data
// points. If weights is not nil it must have the same length as classes,
// otherwise TOC will panic.
//
// More details about TOC curves are available at
// https://en.wikipedia.org/wiki/Total_operating_characteristic
func TOC(classes []bool, weights []float64) (min, ntp, max []float64) {
if weights != nil && len(classes) != len(weights) {
panic("stat: slice length mismatch")
}
if len(classes) == 0 {
return nil, nil, nil
}
ntp = make([]float64, len(classes)+1)
min = make([]float64, len(ntp))
max = make([]float64, len(ntp))
if weights == nil {
for i := range ntp[1:] {
ntp[i+1] = ntp[i]
if classes[len(classes)-i-1] {
ntp[i+1]++
}
}
totalPositive := ntp[len(ntp)-1]
for i := range ntp {
min[i] = math.Max(0, totalPositive-float64(len(classes)-i))
max[i] = math.Min(totalPositive, float64(i))
}
return min, ntp, max
}
cumw := max // Reuse max for cumulative weight. Update its elements last.
for i := range ntp[1:] {
ntp[i+1] = ntp[i]
w := weights[len(weights)-i-1]
cumw[i+1] = cumw[i] + w
if classes[len(classes)-i-1] {
ntp[i+1] += w
}
}
totw := cumw[len(cumw)-1]
totalPositive := ntp[len(ntp)-1]
for i := range ntp {
min[i] = math.Max(0, totalPositive-(totw-cumw[i]))
max[i] = math.Min(totalPositive, cumw[i])
}
return min, ntp, max
}