blob: eb7757ff1288abc4a83062d37c441fee923b3f42 [file] [log] [blame]
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// package lp implements routines for solving linear programs.
package lp
import (
"errors"
"fmt"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// TODO(btracey): Could have a solver structure with an abstract factorizer. With
// this transformation the same high-level code could handle both Dense and Sparse.
// TODO(btracey): Need to improve error handling. Only want to panic if condition number inf.
// TODO(btracey): Performance enhancements. There are currently lots of linear
// solves that can be improved by doing rank-one updates. For example, the swap
// step is just a rank-one update.
// TODO(btracey): Better handling on the linear solve errors. If the condition
// number is not inf and the equation solved "well", should keep moving.
var (
ErrBland = errors.New("lp: bland: all replacements are negative or cause ill-conditioned ab")
ErrInfeasible = errors.New("lp: problem is infeasible")
ErrLinSolve = errors.New("lp: linear solve failure")
ErrUnbounded = errors.New("lp: problem is unbounded")
ErrSingular = errors.New("lp: A is singular")
ErrZeroColumn = errors.New("lp: A has a column of all zeros")
ErrZeroRow = errors.New("lp: A has a row of all zeros")
)
var (
badShape = "lp: size mismatch"
)
// TODO(btracey): Should these tolerances be part of a settings struct?
const (
// initPosTol is the tolerance on the initial condition being feasible. Strictly,
// the x should be positive, but instead it must be greater than -initPosTol.
initPosTol = 1e-13
// blandNegTol is the tolerance on the value being greater than 0 in the bland test.
blandNegTol = 1e-14
// rRoundTol is the tolerance for rounding values to zero when testing if
// constraints are met.
rRoundTol = 1e-13
// dRoundTol is the tolerance for testing if values are zero for the problem
// being unbounded.
dRoundTol = 1e-13
// phaseIZeroTol tests if the Phase I problem returned a feasible solution.
phaseIZeroTol = 1e-12
// blandZeroTol is the tolerance on testing if the bland solution can move.
blandZeroTol = 1e-12
)
// Simplex solves a linear program in standard form using Danzig's Simplex
// algorithm. The standard form of a linear program is:
// minimize c^T x
// s.t. A*x = b
// x >= 0 .
// The input tol sets how close to the optimal solution is found (specifically,
// when the maximal reduced cost is below tol). An error will be returned if the
// problem is infeasible or unbounded. In rare cases, numeric errors can cause
// the Simplex to fail. In this case, an error will be returned along with the
// most recently found feasible solution.
//
// The Convert function can be used to transform a general LP into standard form.
//
// The input matrix A must have full rank and may not contain any columns with
// all zeros. Furthermore, len(c) must equal the number of columns of A, and len(b)
// must equal the number of rows of A. Simplex will panic if these conditions are
// not met.
//
// initialBasic can be used to set the initial set of indices for a feasible
// solution to the LP. If an initial feasible solution is not known, initialBasic
// may be nil. If initialBasic is non-nil, len(initialBasic) must equal the number
// of rows of A and must be an actual feasible solution to the LP, otherwise
// Simplex will panic.
//
// A description of the Simplex algorithm can be found in Ch. 8 of
// Strang, Gilbert. "Linear Algebra and Applications." Academic, New York (1976).
// For a detailed video introduction, see lectures 11-13 of UC Math 352
// https://www.youtube.com/watch?v=ESzYPFkY3og&index=11&list=PLh464gFUoJWOmBYla3zbZbc4nv2AXez6X.
func Simplex(c []float64, A mat.Matrix, b []float64, tol float64, initialBasic []int) (optF float64, optX []float64, err error) {
ans, x, _, err := simplex(initialBasic, c, A, b, tol)
return ans, x, err
}
func simplex(initialBasic []int, c []float64, A mat.Matrix, b []float64, tol float64) (float64, []float64, []int, error) {
err := verifyInputs(initialBasic, c, A, b)
if err != nil {
if err == ErrUnbounded {
return math.Inf(-1), nil, nil, ErrUnbounded
}
return math.NaN(), nil, nil, err
}
m, n := A.Dims()
// There is at least one optimal solution to the LP which is at the intersection
// to a set of constraint boundaries. For a standard form LP with m variables
// and n equality constraints, at least m-n elements of x must equal zero
// at optimality. The Simplex algorithm solves the standard-form LP by starting
// at an initial constraint vertex and successively moving to adjacent constraint
// vertices. At every vertex, the set of non-zero x values is the "basic
// feasible solution". The list of non-zero x's are maintained in basicIdxs,
// the respective columns of A are in ab, and the actual non-zero values of
// x are in xb.
//
// The LP is equality constrained such that A * x = b. This can be expanded
// to
// ab * xb + an * xn = b
// where ab are the columns of a in the basic set, and an are all of the
// other columns. Since each element of xn is zero by definition, this means
// that for all feasible solutions xb = ab^-1 * b.
//
// Before the simplex algorithm can start, an initial feasible solution must
// be found. If initialBasic is non-nil a feasible solution has been supplied.
// Otherwise the "Phase I" problem must be solved to find an initial feasible
// solution.
var basicIdxs []int // The indices of the non-zero x values.
var ab *mat.Dense // The subset of columns of A listed in basicIdxs.
var xb []float64 // The non-zero elements of x. xb = ab^-1 b
if initialBasic != nil {
// InitialBasic supplied. Panic if incorrect length or infeasible.
if len(initialBasic) != m {
panic("lp: incorrect number of initial vectors")
}
ab = mat.NewDense(m, len(initialBasic), nil)
extractColumns(ab, A, initialBasic)
xb = make([]float64, m)
err = initializeFromBasic(xb, ab, b)
if err != nil {
panic(err)
}
basicIdxs = make([]int, len(initialBasic))
copy(basicIdxs, initialBasic)
} else {
// No initial basis supplied. Solve the PhaseI problem.
basicIdxs, ab, xb, err = findInitialBasic(A, b)
if err != nil {
return math.NaN(), nil, nil, err
}
}
// basicIdxs contains the indexes for an initial feasible solution,
// ab contains the extracted columns of A, and xb contains the feasible
// solution. All x not in the basic set are 0 by construction.
// nonBasicIdx is the set of nonbasic variables.
nonBasicIdx := make([]int, 0, n-m)
inBasic := make(map[int]struct{})
for _, v := range basicIdxs {
inBasic[v] = struct{}{}
}
for i := 0; i < n; i++ {
_, ok := inBasic[i]
if !ok {
nonBasicIdx = append(nonBasicIdx, i)
}
}
// cb is the subset of c for the basic variables. an and cn
// are the equivalents to ab and cb but for the nonbasic variables.
cb := make([]float64, len(basicIdxs))
for i, idx := range basicIdxs {
cb[i] = c[idx]
}
cn := make([]float64, len(nonBasicIdx))
for i, idx := range nonBasicIdx {
cn[i] = c[idx]
}
an := mat.NewDense(m, len(nonBasicIdx), nil)
extractColumns(an, A, nonBasicIdx)
bVec := mat.NewVecDense(len(b), b)
cbVec := mat.NewVecDense(len(cb), cb)
// Temporary data needed each iteration. (Described later)
r := make([]float64, n-m)
move := make([]float64, m)
// Solve the linear program starting from the initial feasible set. This is
// the "Phase 2" problem.
//
// Algorithm:
// 1) Compute the "reduced costs" for the non-basic variables. The reduced
// costs are the lagrange multipliers of the constraints.
// r = cn - an^T * ab^-T * cb
// 2) If all of the reduced costs are positive, no improvement is possible,
// and the solution is optimal (xn can only increase because of
// non-negativity constraints). Otherwise, the solution can be improved and
// one element will be exchanged in the basic set.
// 3) Choose the x_n with the most negative value of r. Call this value xe.
// This variable will be swapped into the basic set.
// 4) Increase xe until the next constraint boundary is met. This will happen
// when the first element in xb becomes 0. The distance xe can increase before
// a given element in xb becomes negative can be found from
// xb = Ab^-1 b - Ab^-1 An xn
// = Ab^-1 b - Ab^-1 Ae xe
// = bhat + d x_e
// xe = bhat_i / - d_i
// where Ae is the column of A corresponding to xe.
// The constraining basic index is the first index for which this is true,
// so remove the element which is min_i (bhat_i / -d_i), assuming d_i is negative.
// If no d_i is less than 0, then the problem is unbounded.
// 5) If the new xe is 0 (that is, bhat_i == 0), then this location is at
// the intersection of several constraints. Use the Bland rule instead
// of the rule in step 4 to avoid cycling.
for {
// Compute reduced costs -- r = cn - an^T ab^-T cb
var tmp mat.VecDense
err = tmp.SolveVec(ab.T(), cbVec)
if err != nil {
break
}
data := make([]float64, n-m)
tmp2 := mat.NewVecDense(n-m, data)
tmp2.MulVec(an.T(), &tmp)
floats.SubTo(r, cn, data)
// Replace the most negative element in the simplex. If there are no
// negative entries then the optimal solution has been found.
minIdx := floats.MinIdx(r)
if r[minIdx] >= -tol {
break
}
for i, v := range r {
if math.Abs(v) < rRoundTol {
r[i] = 0
}
}
// Compute the moving distance.
err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx)
if err != nil {
if err == ErrUnbounded {
return math.Inf(-1), nil, nil, ErrUnbounded
}
break
}
// Replace the basic index along the tightest constraint.
replace := floats.MinIdx(move)
if move[replace] <= 0 {
replace, minIdx, err = replaceBland(A, ab, xb, basicIdxs, nonBasicIdx, r, move)
if err != nil {
if err == ErrUnbounded {
return math.Inf(-1), nil, nil, ErrUnbounded
}
break
}
}
// Replace the constrained basicIdx with the newIdx.
basicIdxs[replace], nonBasicIdx[minIdx] = nonBasicIdx[minIdx], basicIdxs[replace]
cb[replace], cn[minIdx] = cn[minIdx], cb[replace]
tmpCol1 := mat.Col(nil, replace, ab)
tmpCol2 := mat.Col(nil, minIdx, an)
ab.SetCol(replace, tmpCol2)
an.SetCol(minIdx, tmpCol1)
// Compute the new xb.
xbVec := mat.NewVecDense(len(xb), xb)
err = xbVec.SolveVec(ab, bVec)
if err != nil {
break
}
}
// Found the optimum successfully or died trying. The basic variables get
// their values, and the non-basic variables are all zero.
opt := floats.Dot(cb, xb)
xopt := make([]float64, n)
for i, v := range basicIdxs {
xopt[v] = xb[i]
}
return opt, xopt, basicIdxs, err
}
// computeMove computes how far can be moved replacing each index. The results
// are stored into move.
func computeMove(move []float64, minIdx int, A mat.Matrix, ab *mat.Dense, xb []float64, nonBasicIdx []int) error {
// Find ae.
col := mat.Col(nil, nonBasicIdx[minIdx], A)
aCol := mat.NewVecDense(len(col), col)
// d = - Ab^-1 Ae
nb, _ := ab.Dims()
d := make([]float64, nb)
dVec := mat.NewVecDense(nb, d)
err := dVec.SolveVec(ab, aCol)
if err != nil {
return ErrLinSolve
}
floats.Scale(-1, d)
for i, v := range d {
if math.Abs(v) < dRoundTol {
d[i] = 0
}
}
// If no di < 0, then problem is unbounded.
if floats.Min(d) >= 0 {
return ErrUnbounded
}
// move = bhat_i / - d_i, assuming d is negative.
bHat := xb // ab^-1 b
for i, v := range d {
if v >= 0 {
move[i] = math.Inf(1)
} else {
move[i] = bHat[i] / math.Abs(v)
}
}
return nil
}
// replaceBland uses the Bland rule to find the indices to swap if the minimum
// move is 0. The indices to be swapped are replace and minIdx (following the
// nomenclature in the main routine).
func replaceBland(A mat.Matrix, ab *mat.Dense, xb []float64, basicIdxs, nonBasicIdx []int, r, move []float64) (replace, minIdx int, err error) {
m, _ := A.Dims()
// Use the traditional bland rule, except don't replace a constraint which
// causes the new ab to be singular.
for i, v := range r {
if v > -blandNegTol {
continue
}
minIdx = i
err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx)
if err != nil {
// Either unbounded or something went wrong.
return -1, -1, err
}
replace = floats.MinIdx(move)
if math.Abs(move[replace]) > blandZeroTol {
// Large enough that it shouldn't be a problem
return replace, minIdx, nil
}
// Find a zero index where replacement is non-singular.
biCopy := make([]int, len(basicIdxs))
for replace, v := range move {
if v > blandZeroTol {
continue
}
copy(biCopy, basicIdxs)
biCopy[replace] = nonBasicIdx[minIdx]
abTmp := mat.NewDense(m, len(biCopy), nil)
extractColumns(abTmp, A, biCopy)
// If the condition number is reasonable, use this index.
if mat.Cond(abTmp, 1) < 1e16 {
return replace, minIdx, nil
}
}
}
return -1, -1, ErrBland
}
func verifyInputs(initialBasic []int, c []float64, A mat.Matrix, b []float64) error {
m, n := A.Dims()
if len(c) != n {
panic("lp: c vector incorrect length")
}
if len(b) != m {
panic("lp: b vector incorrect length")
}
if len(c) != n {
panic("lp: c vector incorrect length")
}
if len(initialBasic) != 0 && len(initialBasic) != m {
panic("lp: initialBasic incorrect length")
}
// Do some sanity checks so that ab does not become singular during the
// simplex solution. If the ZeroRow checks are removed then the code for
// finding a set of linearly indepent columns must be improved.
// Check that if a row of A only has zero elements that corresponding
// element in b is zero, otherwise the problem is infeasible.
// Otherwise return ErrZeroRow.
for i := 0; i < m; i++ {
isZero := true
for j := 0; j < n; j++ {
if A.At(i, j) != 0 {
isZero = false
break
}
}
if isZero && b[i] != 0 {
// Infeasible
return ErrInfeasible
} else if isZero {
return ErrZeroRow
}
}
// Check that if a column only has zero elements that the respective C vector
// is positive (otherwise unbounded). Otherwise return ErrZeroColumn.
for j := 0; j < n; j++ {
isZero := true
for i := 0; i < m; i++ {
if A.At(i, j) != 0 {
isZero = false
break
}
}
if isZero && c[j] < 0 {
return ErrUnbounded
} else if isZero {
return ErrZeroColumn
}
}
return nil
}
// initializeFromBasic initializes the basic feasible solution given a set of
// basic indices. It extracts the columns of A specified by basicIdxs and finds
// the x values at that location. These are stored into xb.
//
// If the columns of A are not linearly independent or if the initial set is not
// feasible, an error is returned.
func initializeFromBasic(xb []float64, ab *mat.Dense, b []float64) error {
m, _ := ab.Dims()
if len(xb) != m {
panic("simplex: bad xb length")
}
xbMat := mat.NewVecDense(m, xb)
err := xbMat.SolveVec(ab, mat.NewVecDense(m, b))
if err != nil {
return errors.New("lp: subcolumns of A for supplied initial basic singular")
}
// The solve ensures that the equality constraints are met (ab * xb = b).
// Thus, the solution is feasible if and only if all of the x's are positive.
allPos := true
for _, v := range xb {
if v < -initPosTol {
allPos = false
break
}
}
if !allPos {
return errors.New("lp: supplied subcolumns not a feasible solution")
}
return nil
}
// extractColumns copies the columns specified by cols into the columns of dst.
func extractColumns(dst *mat.Dense, A mat.Matrix, cols []int) {
r, c := dst.Dims()
ra, _ := A.Dims()
if ra != r {
panic("simplex: row mismatch")
}
if c != len(cols) {
panic("simplex: column mismatch")
}
col := make([]float64, r)
for j, idx := range cols {
mat.Col(col, idx, A)
dst.SetCol(j, col)
}
}
// findInitialBasic finds an initial basic solution, and returns the basic
// indices, ab, and xb.
func findInitialBasic(A mat.Matrix, b []float64) ([]int, *mat.Dense, []float64, error) {
m, n := A.Dims()
basicIdxs := findLinearlyIndependent(A)
if len(basicIdxs) != m {
return nil, nil, nil, ErrSingular
}
// It may be that this linearly independent basis is also a feasible set. If
// so, the Phase I problem can be avoided.
ab := mat.NewDense(m, len(basicIdxs), nil)
extractColumns(ab, A, basicIdxs)
xb := make([]float64, m)
err := initializeFromBasic(xb, ab, b)
if err == nil {
return basicIdxs, ab, xb, nil
}
// This set was not feasible. Instead the "Phase I" problem must be solved
// to find an initial feasible set of basis.
//
// Method: Construct an LP whose optimal solution is a feasible solution
// to the original LP.
// 1) Introduce an artificial variable x_{n+1}.
// 2) Let x_j be the most negative element of x_b (largest constraint violation).
// 3) Add the artificial variable to A with:
// a_{n+1} = b - \sum_{i in basicIdxs} a_i + a_j
// swap j with n+1 in the basicIdxs.
// 4) Define a new LP:
// minimize x_{n+1}
// subject to [A A_{n+1}][x_1 ... x_{n+1}] = b
// x, x_{n+1} >= 0
// 5) Solve this LP. If x_{n+1} != 0, then the problem is infeasible, otherwise
// the found basis can be used as an initial basis for phase II.
//
// The extra column in Step 3 is defined such that the vector of 1s is an
// initial feasible solution.
// Find the largest constraint violator.
// Compute a_{n+1} = b - \sum{i in basicIdxs}a_i + a_j. j is in basicIDx, so
// instead just subtract the basicIdx columns that are not minIDx.
minIdx := floats.MinIdx(xb)
aX1 := make([]float64, m)
copy(aX1, b)
col := make([]float64, m)
for i, v := range basicIdxs {
if i == minIdx {
continue
}
mat.Col(col, v, A)
floats.Sub(aX1, col)
}
// Construct the new LP.
// aNew = [A, a_{n+1}]
// bNew = b
// cNew = 1 for x_{n+1}
aNew := mat.NewDense(m, n+1, nil)
aNew.Copy(A)
aNew.SetCol(n, aX1)
basicIdxs[minIdx] = n // swap minIdx with n in the basic set.
c := make([]float64, n+1)
c[n] = 1
// Solve the Phase I linear program.
_, xOpt, newBasic, err := simplex(basicIdxs, c, aNew, b, 1e-10)
if err != nil {
return nil, nil, nil, fmt.Errorf("lp: error finding feasible basis: %s", err)
}
// The original LP is infeasible if the added variable has non-zero value
// in the optimal solution to the Phase I problem.
if math.Abs(xOpt[n]) > phaseIZeroTol {
return nil, nil, nil, ErrInfeasible
}
// The basis found in Phase I is a feasible solution to the original LP if
// the added variable is not in the basis.
addedIdx := -1
for i, v := range newBasic {
if v == n {
addedIdx = i
}
xb[i] = xOpt[v]
}
if addedIdx == -1 {
extractColumns(ab, A, newBasic)
return newBasic, ab, xb, nil
}
// The value of the added variable is in the basis, but it has a zero value.
// See if exchanging another variable into the basic set finds a feasible
// solution.
basicMap := make(map[int]struct{})
for _, v := range newBasic {
basicMap[v] = struct{}{}
}
var set bool
for i := range xOpt {
if _, inBasic := basicMap[i]; inBasic {
continue
}
newBasic[addedIdx] = i
if set {
mat.Col(col, i, A)
ab.SetCol(addedIdx, col)
} else {
extractColumns(ab, A, newBasic)
set = true
}
err := initializeFromBasic(xb, ab, b)
if err == nil {
return newBasic, ab, xb, nil
}
}
return nil, nil, nil, ErrInfeasible
}
// findLinearlyIndependnt finds a set of linearly independent columns of A, and
// returns the column indexes of the linearly independent columns.
func findLinearlyIndependent(A mat.Matrix) []int {
m, n := A.Dims()
idxs := make([]int, 0, m)
columns := mat.NewDense(m, m, nil)
newCol := make([]float64, m)
// Walk in reverse order because slack variables are typically the last columns
// of A.
for i := n - 1; i >= 0; i-- {
if len(idxs) == m {
break
}
mat.Col(newCol, i, A)
columns.SetCol(len(idxs), newCol)
if len(idxs) == 0 {
// A column is linearly independent from the null set.
// If all-zero column of A are allowed, this code needs to be adjusted.
idxs = append(idxs, i)
continue
}
if mat.Cond(columns.Slice(0, m, 0, len(idxs)+1), 1) > 1e12 {
// Not linearly independent.
continue
}
idxs = append(idxs, i)
}
return idxs
}