blob: b89f8fb7b855e9585a6ecaad17450a2f3c420d73 [file] [log] [blame]
// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
// QR is a type for creating and using the QR factorization of a matrix.
type QR struct {
qr *Dense
tau []float64
cond float64
}
func (qr *QR) updateCond(norm lapack.MatrixNorm) {
// Since A = Q*R, and Q is orthogonal, we get for the condition number κ
// κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Q^T|
// = |R| |R^-1| = κ(R),
// where we used that fact that Q^-1 = Q^T. However, this assumes that
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
n := qr.qr.mat.Cols
work := getFloats(3*n, false)
iwork := getInts(n, false)
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(norm, r.mat, work, iwork)
putFloats(work)
putInts(iwork)
qr.cond = 1 / v
}
// Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
// factorization always exists even if A is singular.
//
// The QR decomposition is a factorization of the matrix A such that A = Q * R.
// The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
// Q and R can be extracted using the QTo and RTo methods.
func (qr *QR) Factorize(a Matrix) {
qr.factorize(a, CondNorm)
}
func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m < n {
panic(ErrShape)
}
k := min(m, n)
if qr.qr == nil {
qr.qr = &Dense{}
}
qr.qr.Clone(a)
work := []float64{0}
qr.tau = make([]float64, k)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
putFloats(work)
qr.updateCond(norm)
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a successful factorization.
func (qr *QR) Cond() float64 {
if qr.qr == nil || qr.qr.IsZero() {
panic("qr: no decomposition computed")
}
return qr.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
// and upper triangular matrices.
// RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
// If dst is nil, a new matrix is allocated. The resulting dst matrix is returned.
func (qr *QR) RTo(dst *Dense) *Dense {
r, c := qr.qr.Dims()
if dst == nil {
dst = NewDense(r, c, nil)
} else {
dst.reuseAs(r, c)
}
// Disguise the QR as an upper triangular
t := &TriDense{
mat: blas64.Triangular{
N: c,
Stride: qr.qr.mat.Stride,
Data: qr.qr.mat.Data,
Uplo: blas.Upper,
Diag: blas.NonUnit,
},
cap: qr.qr.capCols,
}
dst.Copy(t)
// Zero below the triangular.
for i := r; i < c; i++ {
zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
}
return dst
}
// QTo extracts the m×m orthonormal matrix Q from a QR decomposition.
// If dst is nil, a new matrix is allocated. The resulting Q matrix is returned.
func (qr *QR) QTo(dst *Dense) *Dense {
r, _ := qr.qr.Dims()
if dst == nil {
dst = NewDense(r, r, nil)
} else {
dst.reuseAsZeroed(r, r)
}
// Set Q = I.
for i := 0; i < r*r; i += r + 1 {
dst.mat.Data[i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
putFloats(work)
return dst
}
// Solve finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its QR factorized
// form. If A is singular or near-singular a Condition error is returned. Please
// see the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find X such that ||A*X - b||_2 is minimized.
// If trans == true, find the minimum norm solution of A^T * X = b.
// The solution matrix, X, is stored in place into m.
func (qr *QR) Solve(m *Dense, trans bool, b Matrix) error {
r, c := qr.qr.Dims()
br, bc := b.Dims()
// The QR solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into m at the end.
if trans {
if c != br {
panic(ErrShape)
}
m.reuseAs(r, bc)
} else {
if r != br {
panic(ErrShape)
}
m.reuseAs(c, bc)
}
// Do not need to worry about overlap between m and b because x has its own
// independent storage.
x := getWorkspace(max(r, c), bc, false)
x.Copy(b)
t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
if trans {
ok := lapack64.Trtrs(blas.Trans, t, x.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := c; i < r; i++ {
zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, len(work))
putFloats(work)
} else {
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.NoTrans, t, x.mat)
if !ok {
return Condition(math.Inf(1))
}
}
// M was set above to be the correct size for the result.
m.Copy(x)
putWorkspace(x)
if qr.cond > ConditionTolerance {
return Condition(qr.cond)
}
return nil
}
// SolveVec finds a minimum-norm solution to a system of linear equations.
// Please see QR.Solve for the full documentation.
func (qr *QR) SolveVec(v *VecDense, trans bool, b *VecDense) error {
if v != b {
v.checkOverlap(b.mat)
}
r, c := qr.qr.Dims()
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
if trans {
v.reuseAs(r)
} else {
v.reuseAs(c)
}
return qr.Solve(v.asDense(), trans, b.asDense())
}