blob: db429bfadcb43745e2d3425f612209b82b880353 [file] [log] [blame]
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"encoding/binary"
"errors"
"io"
"math"
)
const (
// maxLen is the biggest slice/array len one can create on a 32/64b platform.
maxLen = int64(int(^uint(0) >> 1))
)
var (
sizeInt64 = binary.Size(int64(0))
sizeFloat64 = binary.Size(float64(0))
errTooBig = errors.New("mat: resulting data slice too big")
errTooSmall = errors.New("mat: input slice too small")
errBadBuffer = errors.New("mat: data buffer size mismatch")
errBadSize = errors.New("mat: invalid dimension")
)
// MarshalBinary encodes the receiver into a binary form and returns the result.
//
// Dense is little-endian encoded as follows:
// 0 - 7 number of rows (int64)
// 8 - 15 number of columns (int64)
// 16 - .. matrix data elements (float64)
// [0,0] [0,1] ... [0,ncols-1]
// [1,0] [1,1] ... [1,ncols-1]
// ...
// [nrows-1,0] ... [nrows-1,ncols-1]
func (m Dense) MarshalBinary() ([]byte, error) {
bufLen := int64(m.mat.Rows)*int64(m.mat.Cols)*int64(sizeFloat64) + 2*int64(sizeInt64)
if bufLen <= 0 {
// bufLen is too big and has wrapped around.
return nil, errTooBig
}
p := 0
buf := make([]byte, bufLen)
binary.LittleEndian.PutUint64(buf[p:p+sizeInt64], uint64(m.mat.Rows))
p += sizeInt64
binary.LittleEndian.PutUint64(buf[p:p+sizeInt64], uint64(m.mat.Cols))
p += sizeInt64
r, c := m.Dims()
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
binary.LittleEndian.PutUint64(buf[p:p+sizeFloat64], math.Float64bits(m.at(i, j)))
p += sizeFloat64
}
}
return buf, nil
}
// MarshalBinaryTo encodes the receiver into a binary form and writes it into w.
// MarshalBinaryTo returns the number of bytes written into w and an error, if any.
//
// See MarshalBinary for the on-disk layout.
func (m Dense) MarshalBinaryTo(w io.Writer) (int, error) {
var n int
var buf [8]byte
binary.LittleEndian.PutUint64(buf[:], uint64(m.mat.Rows))
nn, err := w.Write(buf[:])
n += nn
if err != nil {
return n, err
}
binary.LittleEndian.PutUint64(buf[:], uint64(m.mat.Cols))
nn, err = w.Write(buf[:])
n += nn
if err != nil {
return n, err
}
r, c := m.Dims()
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(m.at(i, j)))
nn, err = w.Write(buf[:])
n += nn
if err != nil {
return n, err
}
}
}
return n, nil
}
// UnmarshalBinary decodes the binary form into the receiver.
// It panics if the receiver is a non-zero Dense matrix.
//
// See MarshalBinary for the on-disk layout.
//
// Limited checks on the validity of the binary input are performed:
// - matrix.ErrShape is returned if the number of rows or columns is negative,
// - an error is returned if the resulting Dense matrix is too
// big for the current architecture (e.g. a 16GB matrix written by a
// 64b application and read back from a 32b application.)
// UnmarshalBinary does not limit the size of the unmarshaled matrix, and so
// it should not be used on untrusted data.
func (m *Dense) UnmarshalBinary(data []byte) error {
if !m.IsZero() {
panic("mat: unmarshal into non-zero matrix")
}
if len(data) < 2*sizeInt64 {
return errTooSmall
}
p := 0
rows := int64(binary.LittleEndian.Uint64(data[p : p+sizeInt64]))
p += sizeInt64
cols := int64(binary.LittleEndian.Uint64(data[p : p+sizeInt64]))
p += sizeInt64
if rows < 0 || cols < 0 {
return errBadSize
}
size := rows * cols
if int(size) < 0 || size > maxLen {
return errTooBig
}
if len(data) != int(size)*sizeFloat64+2*sizeInt64 {
return errBadBuffer
}
m.reuseAs(int(rows), int(cols))
for i := range m.mat.Data {
m.mat.Data[i] = math.Float64frombits(binary.LittleEndian.Uint64(data[p : p+sizeFloat64]))
p += sizeFloat64
}
return nil
}
// UnmarshalBinaryFrom decodes the binary form into the receiver and returns
// the number of bytes read and an error if any.
// It panics if the receiver is a non-zero Dense matrix.
//
// See MarshalBinary for the on-disk layout.
//
// Limited checks on the validity of the binary input are performed:
// - matrix.ErrShape is returned if the number of rows or columns is negative,
// - an error is returned if the resulting Dense matrix is too
// big for the current architecture (e.g. a 16GB matrix written by a
// 64b application and read back from a 32b application.)
// UnmarshalBinary does not limit the size of the unmarshaled matrix, and so
// it should not be used on untrusted data.
func (m *Dense) UnmarshalBinaryFrom(r io.Reader) (int, error) {
if !m.IsZero() {
panic("mat: unmarshal into non-zero matrix")
}
var (
n int
buf [8]byte
)
nn, err := readFull(r, buf[:])
n += nn
if err != nil {
return n, err
}
rows := int64(binary.LittleEndian.Uint64(buf[:]))
nn, err = readFull(r, buf[:])
n += nn
if err != nil {
return n, err
}
cols := int64(binary.LittleEndian.Uint64(buf[:]))
if rows < 0 || cols < 0 {
return n, errBadSize
}
size := rows * cols
if int(size) < 0 || size > maxLen {
return n, errTooBig
}
m.reuseAs(int(rows), int(cols))
for i := range m.mat.Data {
nn, err = readFull(r, buf[:])
n += nn
if err != nil {
return n, err
}
m.mat.Data[i] = math.Float64frombits(binary.LittleEndian.Uint64(buf[:]))
}
return n, nil
}
// MarshalBinary encodes the receiver into a binary form and returns the result.
//
// VecDense is little-endian encoded as follows:
// 0 - 7 number of elements (int64)
// 8 - .. vector's data elements (float64)
func (v VecDense) MarshalBinary() ([]byte, error) {
bufLen := int64(sizeInt64) + int64(v.n)*int64(sizeFloat64)
if bufLen <= 0 {
// bufLen is too big and has wrapped around.
return nil, errTooBig
}
p := 0
buf := make([]byte, bufLen)
binary.LittleEndian.PutUint64(buf[p:p+sizeInt64], uint64(v.n))
p += sizeInt64
for i := 0; i < v.n; i++ {
binary.LittleEndian.PutUint64(buf[p:p+sizeFloat64], math.Float64bits(v.at(i)))
p += sizeFloat64
}
return buf, nil
}
// MarshalBinaryTo encodes the receiver into a binary form, writes it to w and
// returns the number of bytes written and an error if any.
//
// See MarshalBainry for the on-disk format.
func (v VecDense) MarshalBinaryTo(w io.Writer) (int, error) {
var (
n int
buf [8]byte
)
binary.LittleEndian.PutUint64(buf[:], uint64(v.n))
nn, err := w.Write(buf[:])
n += nn
if err != nil {
return n, err
}
for i := 0; i < v.n; i++ {
binary.LittleEndian.PutUint64(buf[:], math.Float64bits(v.at(i)))
nn, err = w.Write(buf[:])
n += nn
if err != nil {
return n, err
}
}
return n, nil
}
// UnmarshalBinary decodes the binary form into the receiver.
// It panics if the receiver is a non-zero VecDense.
//
// See MarshalBinary for the on-disk layout.
//
// Limited checks on the validity of the binary input are performed:
// - matrix.ErrShape is returned if the number of rows is negative,
// - an error is returned if the resulting VecDense is too
// big for the current architecture (e.g. a 16GB vector written by a
// 64b application and read back from a 32b application.)
// UnmarshalBinary does not limit the size of the unmarshaled vector, and so
// it should not be used on untrusted data.
func (v *VecDense) UnmarshalBinary(data []byte) error {
if !v.IsZero() {
panic("mat: unmarshal into non-zero vector")
}
p := 0
n := int64(binary.LittleEndian.Uint64(data[p : p+sizeInt64]))
p += sizeInt64
if n < 0 {
return errBadSize
}
if n > maxLen {
return errTooBig
}
if len(data) != int(n)*sizeFloat64+sizeInt64 {
return errBadBuffer
}
v.reuseAs(int(n))
for i := range v.mat.Data {
v.mat.Data[i] = math.Float64frombits(binary.LittleEndian.Uint64(data[p : p+sizeFloat64]))
p += sizeFloat64
}
return nil
}
// UnmarshalBinaryFrom decodes the binary form into the receiver, from the
// io.Reader and returns the number of bytes read and an error if any.
// It panics if the receiver is a non-zero VecDense.
//
// See MarshalBinary for the on-disk layout.
// See UnmarshalBinary for the list of sanity checks performed on the input.
func (v *VecDense) UnmarshalBinaryFrom(r io.Reader) (int, error) {
if !v.IsZero() {
panic("mat: unmarshal into non-zero vector")
}
var (
n int
buf [8]byte
)
nn, err := readFull(r, buf[:])
n += nn
if err != nil {
return n, err
}
sz := int64(binary.LittleEndian.Uint64(buf[:]))
if sz < 0 {
return n, errBadSize
}
if sz > maxLen {
return n, errTooBig
}
v.reuseAs(int(sz))
for i := range v.mat.Data {
nn, err = readFull(r, buf[:])
n += nn
if err != nil {
return n, err
}
v.mat.Data[i] = math.Float64frombits(binary.LittleEndian.Uint64(buf[:]))
}
if n != sizeInt64+int(sz)*sizeFloat64 {
return n, io.ErrUnexpectedEOF
}
return n, nil
}
// readFull reads from r into buf until it has read len(buf).
// It returns the number of bytes copied and an error if fewer bytes were read.
// If an EOF happens after reading fewer than len(buf) bytes, io.ErrUnexpectedEOF is returned.
func readFull(r io.Reader, buf []byte) (int, error) {
var n int
var err error
for n < len(buf) && err == nil {
var nn int
nn, err = r.Read(buf[n:])
n += nn
}
if n == len(buf) {
return n, nil
}
if err == io.EOF {
return n, io.ErrUnexpectedEOF
}
return n, err
}