blob: fa4e91c6d352085180e0ac29fbe03b063a0c0c46 [file] [log] [blame]
// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badTriangle = "mat: invalid triangle"
badCholesky = "mat: invalid Cholesky factorization"
)
// Cholesky is a type for creating and using the Cholesky factorization of a
// symmetric positive definite matrix.
//
// Cholesky methods may only be called on a value that has been successfully
// initialized by a call to Factorize that has returned true. Calls to methods
// of an unsuccessful Cholesky factorization will panic.
type Cholesky struct {
// The chol pointer must never be retained as a pointer outside the Cholesky
// struct, either by returning chol outside the struct or by setting it to
// a pointer coming from outside. The same prohibition applies to the data
// slice within chol.
chol *TriDense
cond float64
}
// updateCond updates the condition number of the Cholesky decomposition. If
// norm > 0, then that norm is used as the norm of the original matrix A, otherwise
// the norm is estimated from the decomposition.
func (c *Cholesky) updateCond(norm float64) {
n := c.chol.mat.N
work := getFloats(3*n, false)
defer putFloats(work)
if norm < 0 {
// This is an approximation. By the definition of a norm,
// |AB| <= |A| |B|.
// Since A = U^T*U, we get for the condition number κ that
// κ(A) := |A| |A^-1| = |U^T*U| |A^-1| <= |U^T| |U| |A^-1|,
// so this will overestimate the condition number somewhat.
// The norm of the original factorized matrix cannot be stored
// because of update possibilities.
unorm := lapack64.Lantr(CondNorm, c.chol.mat, work)
lnorm := lapack64.Lantr(CondNormTrans, c.chol.mat, work)
norm = unorm * lnorm
}
sym := c.chol.asSymBlas()
iwork := getInts(n, false)
v := lapack64.Pocon(sym, norm, work, iwork)
putInts(iwork)
c.cond = 1 / v
}
// Cond returns the condition number of the factorized matrix.
func (c *Cholesky) Cond() float64 {
return c.cond
}
// Factorize calculates the Cholesky decomposition of the matrix A and returns
// whether the matrix is positive definite. If Factorize returns false, the
// factorization must not be used.
func (c *Cholesky) Factorize(a Symmetric) (ok bool) {
n := a.Symmetric()
if c.isZero() {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
}
copySymIntoTriangle(c.chol, a)
sym := c.chol.asSymBlas()
work := getFloats(c.chol.mat.N, false)
norm := lapack64.Lansy(CondNorm, sym, work)
putFloats(work)
_, ok = lapack64.Potrf(sym)
if ok {
c.updateCond(norm)
} else {
c.Reset()
}
return ok
}
// Reset resets the factorization so that it can be reused as the receiver of a
// dimensionally restricted operation.
func (c *Cholesky) Reset() {
if !c.isZero() {
c.chol.Reset()
}
c.cond = math.Inf(1)
}
// SetFromU sets the Cholesky decomposition from the given triangular matrix.
// SetFromU panics if t is not upper triangular. Note that t is copied into,
// not stored inside, the receiver.
func (c *Cholesky) SetFromU(t *TriDense) {
n, kind := t.Triangle()
if kind != Upper {
panic("cholesky: matrix must be upper triangular")
}
if c.isZero() {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
}
c.chol.Copy(t)
c.updateCond(-1)
}
// Clone makes a copy of the input Cholesky into the receiver, overwriting the
// previous value of the receiver. Clone does not place any restrictions on receiver
// shape. Clone panics if the input Cholesky is not the result of a valid decomposition.
func (c *Cholesky) Clone(chol *Cholesky) {
if !chol.valid() {
panic(badCholesky)
}
n := chol.Size()
if c.isZero() {
c.chol = NewTriDense(n, Upper, nil)
} else {
c.chol = NewTriDense(n, Upper, use(c.chol.mat.Data, n*n))
}
c.chol.Copy(chol.chol)
c.cond = chol.cond
}
// Size returns the dimension of the factorized matrix.
func (c *Cholesky) Size() int {
if !c.valid() {
panic(badCholesky)
}
return c.chol.mat.N
}
// Det returns the determinant of the matrix that has been factorized.
func (c *Cholesky) Det() float64 {
if !c.valid() {
panic(badCholesky)
}
return math.Exp(c.LogDet())
}
// LogDet returns the log of the determinant of the matrix that has been factorized.
func (c *Cholesky) LogDet() float64 {
if !c.valid() {
panic(badCholesky)
}
var det float64
for i := 0; i < c.chol.mat.N; i++ {
det += 2 * math.Log(c.chol.mat.Data[i*c.chol.mat.Stride+i])
}
return det
}
// Solve finds the matrix m that solves A * m = b where A is represented
// by the Cholesky decomposition, placing the result in m.
func (c *Cholesky) Solve(m *Dense, b Matrix) error {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
bm, bn := b.Dims()
if n != bm {
panic(ErrShape)
}
m.reuseAs(bm, bn)
if b != m {
m.Copy(b)
}
blas64.Trsm(blas.Left, blas.Trans, 1, c.chol.mat, m.mat)
blas64.Trsm(blas.Left, blas.NoTrans, 1, c.chol.mat, m.mat)
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
// SolveChol finds the matrix m that solves A * m = B where A and B are represented
// by their Cholesky decompositions a and b, placing the result in the receiver.
func (a *Cholesky) SolveChol(m *Dense, b *Cholesky) error {
if !a.valid() || !b.valid() {
panic(badCholesky)
}
bn := b.chol.mat.N
if a.chol.mat.N != bn {
panic(ErrShape)
}
m.reuseAsZeroed(bn, bn)
m.Copy(b.chol.T())
blas64.Trsm(blas.Left, blas.Trans, 1, a.chol.mat, m.mat)
blas64.Trsm(blas.Left, blas.NoTrans, 1, a.chol.mat, m.mat)
blas64.Trmm(blas.Right, blas.NoTrans, 1, b.chol.mat, m.mat)
if a.cond > ConditionTolerance {
return Condition(a.cond)
}
return nil
}
// SolveVec finds the vector v that solves A * v = b where A is represented
// by the Cholesky decomposition, placing the result in v.
func (c *Cholesky) SolveVec(v, b *VecDense) error {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
vn := b.Len()
if vn != n {
panic(ErrShape)
}
if v != b {
v.checkOverlap(b.mat)
}
v.reuseAs(n)
if v != b {
v.CopyVec(b)
}
blas64.Trsv(blas.Trans, c.chol.mat, v.mat)
blas64.Trsv(blas.NoTrans, c.chol.mat, v.mat)
if c.cond > ConditionTolerance {
return Condition(c.cond)
}
return nil
}
// UTo extracts the n×n upper triangular matrix U from a Cholesky
// decomposition into dst and returns the result. If dst is nil a new
// TriDense is allocated.
// A = U^T * U.
func (c *Cholesky) UTo(dst *TriDense) *TriDense {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst == nil {
dst = NewTriDense(n, Upper, make([]float64, n*n))
} else {
dst.reuseAs(n, Upper)
}
dst.Copy(c.chol)
return dst
}
// LTo extracts the n×n lower triangular matrix L from a Cholesky
// decomposition into dst and returns the result. If dst is nil a new
// TriDense is allocated.
// A = L * L^T.
func (c *Cholesky) LTo(dst *TriDense) *TriDense {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst == nil {
dst = NewTriDense(n, Lower, make([]float64, n*n))
} else {
dst.reuseAs(n, Lower)
}
dst.Copy(c.chol.TTri())
return dst
}
// To reconstructs the original positive definite matrix given its
// Cholesky decomposition into dst and returns the result. If dst is nil
// a new SymDense is allocated.
func (c *Cholesky) To(dst *SymDense) *SymDense {
if !c.valid() {
panic(badCholesky)
}
n := c.chol.mat.N
if dst == nil {
dst = NewSymDense(n, make([]float64, n*n))
} else {
dst.reuseAs(n)
}
dst.SymOuterK(1, c.chol.T())
return dst
}
// InverseTo computes the inverse of the matrix represented by its Cholesky
// factorization and stores the result into s. If the factorized
// matrix is ill-conditioned, a Condition error will be returned.
// Note that matrix inversion is numerically unstable, and should generally be
// avoided where possible, for example by using the Solve routines.
func (c *Cholesky) InverseTo(s *SymDense) error {
if !c.valid() {
panic(badCholesky)
}
// TODO(btracey): Replace this code with a direct call to Dpotri when it
// is available.
s.reuseAs(c.chol.mat.N)
// If:
// chol(A) = U^T * U
// Then:
// chol(A^-1) = S * S^T
// where S = U^-1
var t TriDense
err := t.InverseTri(c.chol)
s.SymOuterK(1, &t)
return err
}
// SymRankOne performs a rank-1 update of the original matrix A and refactorizes
// its Cholesky factorization, storing the result into the receiver. That is, if
// in the original Cholesky factorization
// U^T * U = A,
// in the updated factorization
// U'^T * U' = A + alpha * x * x^T = A'.
//
// Note that when alpha is negative, the updating problem may be ill-conditioned
// and the results may be inaccurate, or the updated matrix A' may not be
// positive definite and not have a Cholesky factorization. SymRankOne returns
// whether the updated matrix A' is positive definite.
//
// SymRankOne updates a Cholesky factorization in O(n²) time. The Cholesky
// factorization computation from scratch is O(n³).
func (c *Cholesky) SymRankOne(orig *Cholesky, alpha float64, x *VecDense) (ok bool) {
if !orig.valid() {
panic(badCholesky)
}
n := orig.Size()
if x.Len() != n {
panic(ErrShape)
}
if orig != c {
if c.isZero() {
c.chol = NewTriDense(n, Upper, nil)
} else if c.chol.mat.N != n {
panic(ErrShape)
}
c.chol.Copy(orig.chol)
}
if alpha == 0 {
return true
}
// Algorithms for updating and downdating the Cholesky factorization are
// described, for example, in
// - J. J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart: LINPACK
// Users' Guide. SIAM (1979), pages 10.10--10.14
// or
// - P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders: Methods for
// modifying matrix factorizations. Mathematics of Computation 28(126)
// (1974), Method C3 on page 521
//
// The implementation is based on LINPACK code
// http://www.netlib.org/linpack/dchud.f
// http://www.netlib.org/linpack/dchdd.f
// and
// https://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2646
//
// According to http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00301.html
// LINPACK is released under BSD license.
//
// See also:
// - M. A. Saunders: Large-scale Linear Programming Using the Cholesky
// Factorization. Technical Report Stanford University (1972)
// http://i.stanford.edu/pub/cstr/reports/cs/tr/72/252/CS-TR-72-252.pdf
// - Matthias Seeger: Low rank updates for the Cholesky decomposition.
// EPFL Technical Report 161468 (2004)
// http://infoscience.epfl.ch/record/161468
work := getFloats(n, false)
defer putFloats(work)
blas64.Copy(n, x.RawVector(), blas64.Vector{1, work})
if alpha > 0 {
// Compute rank-1 update.
if alpha != 1 {
blas64.Scal(n, math.Sqrt(alpha), blas64.Vector{1, work})
}
umat := c.chol.mat
stride := umat.Stride
for i := 0; i < n; i++ {
// Compute parameters of the Givens matrix that zeroes
// the i-th element of x.
c, s, r, _ := blas64.Rotg(umat.Data[i*stride+i], work[i])
if r < 0 {
// Multiply by -1 to have positive diagonal
// elemnts.
r *= -1
c *= -1
s *= -1
}
umat.Data[i*stride+i] = r
if i < n-1 {
// Multiply the extended factorization matrix by
// the Givens matrix from the left. Only
// the i-th row and x are modified.
blas64.Rot(n-i-1,
blas64.Vector{1, umat.Data[i*stride+i+1 : i*stride+n]},
blas64.Vector{1, work[i+1 : n]},
c, s)
}
}
c.updateCond(-1)
return true
}
// Compute rank-1 downdate.
alpha = math.Sqrt(-alpha)
if alpha != 1 {
blas64.Scal(n, alpha, blas64.Vector{1, work})
}
// Solve U^T * p = x storing the result into work.
ok = lapack64.Trtrs(blas.Trans, c.chol.RawTriangular(), blas64.General{
Rows: n,
Cols: 1,
Stride: 1,
Data: work,
})
if !ok {
// The original matrix is singular. Should not happen, because
// the factorization is valid.
panic(badCholesky)
}
norm := blas64.Nrm2(n, blas64.Vector{1, work})
if norm >= 1 {
// The updated matrix is not positive definite.
return false
}
norm = math.Sqrt((1 + norm) * (1 - norm))
cos := getFloats(n, false)
defer putFloats(cos)
sin := getFloats(n, false)
defer putFloats(sin)
for i := n - 1; i >= 0; i-- {
// Compute parameters of Givens matrices that zero elements of p
// backwards.
cos[i], sin[i], norm, _ = blas64.Rotg(norm, work[i])
if norm < 0 {
norm *= -1
cos[i] *= -1
sin[i] *= -1
}
}
umat := c.chol.mat
stride := umat.Stride
for i := n - 1; i >= 0; i-- {
// Apply Givens matrices to U.
// TODO(vladimir-ch): Use workspace to avoid modifying the
// receiver in case an invalid factorization is created.
blas64.Rot(n-i, blas64.Vector{1, work[i:n]}, blas64.Vector{1, umat.Data[i*stride+i : i*stride+n]}, cos[i], sin[i])
if umat.Data[i*stride+i] == 0 {
// The matrix is singular (may rarely happen due to
// floating-point effects?).
ok = false
} else if umat.Data[i*stride+i] < 0 {
// Diagonal elements should be positive. If it happens
// that on the i-th row the diagonal is negative,
// multiply U from the left by an identity matrix that
// has -1 on the i-th row.
blas64.Scal(n-i, -1, blas64.Vector{1, umat.Data[i*stride+i : i*stride+n]})
}
}
if ok {
c.updateCond(-1)
} else {
c.Reset()
}
return ok
}
func (c *Cholesky) isZero() bool {
return c.chol == nil
}
func (c *Cholesky) valid() bool {
return !c.isZero() && !c.chol.IsZero()
}