blob: f2376a7d6571655e720ce9e3a940c4c682057f1e [file] [log] [blame]
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"math/cmplx"
"math/rand"
"testing"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
const (
// dlamchE is the machine epsilon. For IEEE this is 2^{-53}.
dlamchE = 1.0 / (1 << 53)
dlamchB = 2
dlamchP = dlamchB * dlamchE
// dlamchS is the smallest normal number. For IEEE this is 2^{-1022}.
dlamchS = 1.0 / (1 << 256) / (1 << 256) / (1 << 256) / (1 << 254)
)
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// worklen describes how much workspace a test should use.
type worklen int
const (
minimumWork worklen = iota
mediumWork
optimumWork
)
// nanSlice allocates a new slice of length n filled with NaN.
func nanSlice(n int) []float64 {
s := make([]float64, n)
for i := range s {
s[i] = math.NaN()
}
return s
}
// randomSlice allocates a new slice of length n filled with random values.
func randomSlice(n int, rnd *rand.Rand) []float64 {
s := make([]float64, n)
for i := range s {
s[i] = rnd.NormFloat64()
}
return s
}
// nanGeneral allocates a new r×c general matrix filled with NaN values.
func nanGeneral(r, c, stride int) blas64.General {
if r < 0 || c < 0 {
panic("bad matrix size")
}
if r == 0 || c == 0 {
return blas64.General{Stride: max(1, stride)}
}
if stride < c {
panic("bad stride")
}
return blas64.General{
Rows: r,
Cols: c,
Stride: stride,
Data: nanSlice((r-1)*stride + c),
}
}
// randomGeneral allocates a new r×c general matrix filled with random
// numbers. Out-of-range elements are filled with NaN values.
func randomGeneral(r, c, stride int, rnd *rand.Rand) blas64.General {
ans := nanGeneral(r, c, stride)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
ans.Data[i*ans.Stride+j] = rnd.NormFloat64()
}
}
return ans
}
// randomHessenberg allocates a new n×n Hessenberg matrix filled with zeros
// under the first subdiagonal and with random numbers elsewhere. Out-of-range
// elements are filled with NaN values.
func randomHessenberg(n, stride int, rnd *rand.Rand) blas64.General {
ans := nanGeneral(n, n, stride)
for i := 0; i < n; i++ {
for j := 0; j < i-1; j++ {
ans.Data[i*ans.Stride+j] = 0
}
for j := max(0, i-1); j < n; j++ {
ans.Data[i*ans.Stride+j] = rnd.NormFloat64()
}
}
return ans
}
// randomSchurCanonical returns a random, general matrix in Schur canonical
// form, that is, block upper triangular with 1×1 and 2×2 diagonal blocks where
// each 2×2 diagonal block has its diagonal elements equal and its off-diagonal
// elements of opposite sign.
func randomSchurCanonical(n, stride int, rnd *rand.Rand) blas64.General {
t := randomGeneral(n, n, stride, rnd)
// Zero out the lower triangle.
for i := 0; i < t.Rows; i++ {
for j := 0; j < i; j++ {
t.Data[i*t.Stride+j] = 0
}
}
// Randomly create 2×2 diagonal blocks.
for i := 0; i < t.Rows; {
if i == t.Rows-1 || rnd.Float64() < 0.5 {
// 1×1 block.
i++
continue
}
// 2×2 block.
// Diagonal elements equal.
t.Data[(i+1)*t.Stride+i+1] = t.Data[i*t.Stride+i]
// Off-diagonal elements of opposite sign.
c := rnd.NormFloat64()
if math.Signbit(c) == math.Signbit(t.Data[i*t.Stride+i+1]) {
c *= -1
}
t.Data[(i+1)*t.Stride+i] = c
i += 2
}
return t
}
// blockedUpperTriGeneral returns a normal random, general matrix in the form
//
// c-k-l k l
// A = k [ 0 A12 A13 ] if r-k-l >= 0;
// l [ 0 0 A23 ]
// r-k-l [ 0 0 0 ]
//
// c-k-l k l
// A = k [ 0 A12 A13 ] if r-k-l < 0;
// r-k [ 0 0 A23 ]
//
// where the k×k matrix A12 and l×l matrix is non-singular
// upper triangular. A23 is l×l upper triangular if r-k-l >= 0,
// otherwise A23 is (r-k)×l upper trapezoidal.
func blockedUpperTriGeneral(r, c, k, l, stride int, kblock bool, rnd *rand.Rand) blas64.General {
t := l
if kblock {
t += k
}
ans := zeros(r, c, stride)
for i := 0; i < min(r, t); i++ {
var v float64
for v == 0 {
v = rnd.NormFloat64()
}
ans.Data[i*ans.Stride+i+(c-t)] = v
}
for i := 0; i < min(r, t); i++ {
for j := i + (c - t) + 1; j < c; j++ {
ans.Data[i*ans.Stride+j] = rnd.NormFloat64()
}
}
return ans
}
// nanTriangular allocates a new r×c triangular matrix filled with NaN values.
func nanTriangular(uplo blas.Uplo, n, stride int) blas64.Triangular {
if n < 0 {
panic("bad matrix size")
}
if n == 0 {
return blas64.Triangular{
Stride: max(1, stride),
Uplo: uplo,
Diag: blas.NonUnit,
}
}
if stride < n {
panic("bad stride")
}
return blas64.Triangular{
N: n,
Stride: stride,
Data: nanSlice((n-1)*stride + n),
Uplo: uplo,
Diag: blas.NonUnit,
}
}
// generalOutsideAllNaN returns whether all out-of-range elements have NaN
// values.
func generalOutsideAllNaN(a blas64.General) bool {
// Check after last column.
for i := 0; i < a.Rows-1; i++ {
for _, v := range a.Data[i*a.Stride+a.Cols : i*a.Stride+a.Stride] {
if !math.IsNaN(v) {
return false
}
}
}
// Check after last element.
last := (a.Rows-1)*a.Stride + a.Cols
if a.Rows == 0 || a.Cols == 0 {
last = 0
}
for _, v := range a.Data[last:] {
if !math.IsNaN(v) {
return false
}
}
return true
}
// triangularOutsideAllNaN returns whether all out-of-triangle elements have NaN
// values.
func triangularOutsideAllNaN(a blas64.Triangular) bool {
if a.Uplo == blas.Upper {
// Check below diagonal.
for i := 0; i < a.N; i++ {
for _, v := range a.Data[i*a.Stride : i*a.Stride+i] {
if !math.IsNaN(v) {
return false
}
}
}
// Check after last column.
for i := 0; i < a.N-1; i++ {
for _, v := range a.Data[i*a.Stride+a.N : i*a.Stride+a.Stride] {
if !math.IsNaN(v) {
return false
}
}
}
} else {
// Check above diagonal.
for i := 0; i < a.N-1; i++ {
for _, v := range a.Data[i*a.Stride+i+1 : i*a.Stride+a.Stride] {
if !math.IsNaN(v) {
return false
}
}
}
}
// Check after last element.
for _, v := range a.Data[max(0, a.N-1)*a.Stride+a.N:] {
if !math.IsNaN(v) {
return false
}
}
return true
}
// transposeGeneral returns a new general matrix that is the transpose of the
// input. Nothing is done with data outside the {rows, cols} limit of the general.
func transposeGeneral(a blas64.General) blas64.General {
ans := blas64.General{
Rows: a.Cols,
Cols: a.Rows,
Stride: a.Rows,
Data: make([]float64, a.Cols*a.Rows),
}
for i := 0; i < a.Rows; i++ {
for j := 0; j < a.Cols; j++ {
ans.Data[j*ans.Stride+i] = a.Data[i*a.Stride+j]
}
}
return ans
}
// columnNorms returns the column norms of a.
func columnNorms(m, n int, a []float64, lda int) []float64 {
bi := blas64.Implementation()
norms := make([]float64, n)
for j := 0; j < n; j++ {
norms[j] = bi.Dnrm2(m, a[j:], lda)
}
return norms
}
// extractVMat collects the single reflectors from a into a matrix.
func extractVMat(m, n int, a []float64, lda int, direct lapack.Direct, store lapack.StoreV) blas64.General {
k := min(m, n)
switch {
default:
panic("not implemented")
case direct == lapack.Forward && store == lapack.ColumnWise:
v := blas64.General{
Rows: m,
Cols: k,
Stride: k,
Data: make([]float64, m*k),
}
for i := 0; i < k; i++ {
for j := 0; j < i; j++ {
v.Data[j*v.Stride+i] = 0
}
v.Data[i*v.Stride+i] = 1
for j := i + 1; j < m; j++ {
v.Data[j*v.Stride+i] = a[j*lda+i]
}
}
return v
case direct == lapack.Forward && store == lapack.RowWise:
v := blas64.General{
Rows: k,
Cols: n,
Stride: n,
Data: make([]float64, k*n),
}
for i := 0; i < k; i++ {
for j := 0; j < i; j++ {
v.Data[i*v.Stride+j] = 0
}
v.Data[i*v.Stride+i] = 1
for j := i + 1; j < n; j++ {
v.Data[i*v.Stride+j] = a[i*lda+j]
}
}
return v
}
}
// constructBidiagonal constructs a bidiagonal matrix with the given diagonal
// and off-diagonal elements.
func constructBidiagonal(uplo blas.Uplo, n int, d, e []float64) blas64.General {
bMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
for i := 0; i < n-1; i++ {
bMat.Data[i*bMat.Stride+i] = d[i]
if uplo == blas.Upper {
bMat.Data[i*bMat.Stride+i+1] = e[i]
} else {
bMat.Data[(i+1)*bMat.Stride+i] = e[i]
}
}
bMat.Data[(n-1)*bMat.Stride+n-1] = d[n-1]
return bMat
}
// constructVMat transforms the v matrix based on the storage.
func constructVMat(vMat blas64.General, store lapack.StoreV, direct lapack.Direct) blas64.General {
m := vMat.Rows
k := vMat.Cols
switch {
default:
panic("not implemented")
case store == lapack.ColumnWise && direct == lapack.Forward:
ldv := k
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
if j > i {
v[i*ldv+j] = 0
} else if j == i {
v[i*ldv+i] = 1
} else {
v[i*ldv+j] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: m,
Cols: k,
Stride: k,
Data: v,
}
case store == lapack.RowWise && direct == lapack.Forward:
ldv := m
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
if j > i {
v[j*ldv+i] = 0
} else if j == i {
v[j*ldv+i] = 1
} else {
v[j*ldv+i] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: k,
Cols: m,
Stride: m,
Data: v,
}
case store == lapack.ColumnWise && direct == lapack.Backward:
rowsv := m
ldv := k
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
vrow := rowsv - i - 1
vcol := k - j - 1
if j > i {
v[vrow*ldv+vcol] = 0
} else if j == i {
v[vrow*ldv+vcol] = 1
} else {
v[vrow*ldv+vcol] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: rowsv,
Cols: ldv,
Stride: ldv,
Data: v,
}
case store == lapack.RowWise && direct == lapack.Backward:
rowsv := k
ldv := m
v := make([]float64, m*k)
for i := 0; i < m; i++ {
for j := 0; j < k; j++ {
vcol := ldv - i - 1
vrow := k - j - 1
if j > i {
v[vrow*ldv+vcol] = 0
} else if j == i {
v[vrow*ldv+vcol] = 1
} else {
v[vrow*ldv+vcol] = vMat.Data[i*vMat.Stride+j]
}
}
}
return blas64.General{
Rows: rowsv,
Cols: ldv,
Stride: ldv,
Data: v,
}
}
}
func constructH(tau []float64, v blas64.General, store lapack.StoreV, direct lapack.Direct) blas64.General {
m := v.Rows
k := v.Cols
if store == lapack.RowWise {
m, k = k, m
}
h := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
for i := 0; i < m; i++ {
h.Data[i*m+i] = 1
}
for i := 0; i < k; i++ {
vecData := make([]float64, m)
if store == lapack.ColumnWise {
for j := 0; j < m; j++ {
vecData[j] = v.Data[j*v.Cols+i]
}
} else {
for j := 0; j < m; j++ {
vecData[j] = v.Data[i*v.Cols+j]
}
}
vec := blas64.Vector{
Inc: 1,
Data: vecData,
}
hi := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
for i := 0; i < m; i++ {
hi.Data[i*m+i] = 1
}
// hi = I - tau * v * v^T
blas64.Ger(-tau[i], vec, vec, hi)
hcopy := blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: make([]float64, m*m),
}
copy(hcopy.Data, h.Data)
if direct == lapack.Forward {
// H = H * H_I in forward mode
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, hcopy, hi, 0, h)
} else {
// H = H_I * H in backward mode
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, hi, hcopy, 0, h)
}
}
return h
}
// constructQ constructs the Q matrix from the result of dgeqrf and dgeqr2.
func constructQ(kind string, m, n int, a []float64, lda int, tau []float64) blas64.General {
k := min(m, n)
return constructQK(kind, m, n, k, a, lda, tau)
}
// constructQK constructs the Q matrix from the result of dgeqrf and dgeqr2 using
// the first k reflectors.
func constructQK(kind string, m, n, k int, a []float64, lda int, tau []float64) blas64.General {
var sz int
switch kind {
case "QR":
sz = m
case "LQ", "RQ":
sz = n
}
q := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
for i := 0; i < sz; i++ {
q.Data[i*sz+i] = 1
}
qCopy := blas64.General{
Rows: q.Rows,
Cols: q.Cols,
Stride: q.Stride,
Data: make([]float64, len(q.Data)),
}
for i := 0; i < k; i++ {
h := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
for j := 0; j < sz; j++ {
h.Data[j*sz+j] = 1
}
vVec := blas64.Vector{
Inc: 1,
Data: make([]float64, sz),
}
switch kind {
case "QR":
vVec.Data[i] = 1
for j := i + 1; j < sz; j++ {
vVec.Data[j] = a[lda*j+i]
}
case "LQ":
vVec.Data[i] = 1
for j := i + 1; j < sz; j++ {
vVec.Data[j] = a[i*lda+j]
}
case "RQ":
for j := 0; j < n-k+i; j++ {
vVec.Data[j] = a[(m-k+i)*lda+j]
}
vVec.Data[n-k+i] = 1
}
blas64.Ger(-tau[i], vVec, vVec, h)
copy(qCopy.Data, q.Data)
// Multiply q by the new h.
switch kind {
case "QR", "RQ":
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, h, 0, q)
case "LQ":
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, h, qCopy, 0, q)
}
}
return q
}
// checkBidiagonal checks the bidiagonal decomposition from dlabrd and dgebd2.
// The input to this function is the answer returned from the routines, stored
// in a, d, e, tauP, and tauQ. The data of original A matrix (before
// decomposition) is input in aCopy.
//
// checkBidiagonal constructs the V and U matrices, and from them constructs Q
// and P. Using these constructions, it checks that Q^T * A * P and checks that
// the result is bidiagonal.
func checkBidiagonal(t *testing.T, m, n, nb int, a []float64, lda int, d, e, tauP, tauQ, aCopy []float64) {
// Check the answer.
// Construct V and U.
qMat := constructQPBidiagonal(lapack.ApplyQ, m, n, nb, a, lda, tauQ)
pMat := constructQPBidiagonal(lapack.ApplyP, m, n, nb, a, lda, tauP)
// Compute Q^T * A * P.
aMat := blas64.General{
Rows: m,
Cols: n,
Stride: lda,
Data: make([]float64, len(aCopy)),
}
copy(aMat.Data, aCopy)
tmp1 := blas64.General{
Rows: m,
Cols: n,
Stride: n,
Data: make([]float64, m*n),
}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, qMat, aMat, 0, tmp1)
tmp2 := blas64.General{
Rows: m,
Cols: n,
Stride: n,
Data: make([]float64, m*n),
}
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, tmp1, pMat, 0, tmp2)
// Check that the first nb rows and cols of tm2 are upper bidiagonal
// if m >= n, and lower bidiagonal otherwise.
correctDiag := true
matchD := true
matchE := true
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i >= nb && j >= nb {
continue
}
v := tmp2.Data[i*tmp2.Stride+j]
if i == j {
if math.Abs(d[i]-v) > 1e-12 {
matchD = false
}
continue
}
if m >= n && i == j-1 {
if math.Abs(e[j-1]-v) > 1e-12 {
matchE = false
}
continue
}
if m < n && i-1 == j {
if math.Abs(e[i-1]-v) > 1e-12 {
matchE = false
}
continue
}
if math.Abs(v) > 1e-12 {
correctDiag = false
}
}
}
if !correctDiag {
t.Errorf("Updated A not bi-diagonal")
}
if !matchD {
fmt.Println("d = ", d)
t.Errorf("D Mismatch")
}
if !matchE {
t.Errorf("E mismatch")
}
}
// constructQPBidiagonal constructs Q or P from the Bidiagonal decomposition
// computed by dlabrd and bgebd2.
func constructQPBidiagonal(vect lapack.DecompUpdate, m, n, nb int, a []float64, lda int, tau []float64) blas64.General {
sz := n
if vect == lapack.ApplyQ {
sz = m
}
var ldv int
var v blas64.General
if vect == lapack.ApplyQ {
ldv = nb
v = blas64.General{
Rows: m,
Cols: nb,
Stride: ldv,
Data: make([]float64, m*ldv),
}
} else {
ldv = n
v = blas64.General{
Rows: nb,
Cols: n,
Stride: ldv,
Data: make([]float64, m*ldv),
}
}
if vect == lapack.ApplyQ {
if m >= n {
for i := 0; i < m; i++ {
for j := 0; j <= min(nb-1, i); j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 1; i < m; i++ {
for j := 0; j <= min(nb-1, i-1); j++ {
if i-1 == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
} else {
if m < n {
for i := 0; i < nb; i++ {
for j := i; j < n; j++ {
if i == j {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
} else {
for i := 0; i < nb; i++ {
for j := i + 1; j < n; j++ {
if j-1 == i {
v.Data[i*ldv+j] = 1
continue
}
v.Data[i*ldv+j] = a[i*lda+j]
}
}
}
}
// The variable name is a computation of Q, but the algorithm is mostly the
// same for computing P (just with different data).
qMat := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
hMat := blas64.General{
Rows: sz,
Cols: sz,
Stride: sz,
Data: make([]float64, sz*sz),
}
// set Q to I
for i := 0; i < sz; i++ {
qMat.Data[i*qMat.Stride+i] = 1
}
for i := 0; i < nb; i++ {
qCopy := blas64.General{Rows: qMat.Rows, Cols: qMat.Cols, Stride: qMat.Stride, Data: make([]float64, len(qMat.Data))}
copy(qCopy.Data, qMat.Data)
// Set g and h to I
for i := 0; i < sz; i++ {
for j := 0; j < sz; j++ {
if i == j {
hMat.Data[i*sz+j] = 1
} else {
hMat.Data[i*sz+j] = 0
}
}
}
var vi blas64.Vector
// H -= tauQ[i] * v[i] * v[i]^t
if vect == lapack.ApplyQ {
vi = blas64.Vector{
Inc: v.Stride,
Data: v.Data[i:],
}
} else {
vi = blas64.Vector{
Inc: 1,
Data: v.Data[i*v.Stride:],
}
}
blas64.Ger(-tau[i], vi, vi, hMat)
// Q = Q * G[1]
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qCopy, hMat, 0, qMat)
}
return qMat
}
// printRowise prints the matrix with one row per line. This is useful for debugging.
// If beyond is true, it prints beyond the final column to lda. If false, only
// the columns are printed.
func printRowise(a []float64, m, n, lda int, beyond bool) {
for i := 0; i < m; i++ {
end := n
if beyond {
end = lda
}
fmt.Println(a[i*lda : i*lda+end])
}
}
// isOrthonormal checks that a general matrix is orthonormal.
func isOrthonormal(q blas64.General) bool {
n := q.Rows
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
dot := blas64.Dot(n,
blas64.Vector{Inc: 1, Data: q.Data[i*q.Stride:]},
blas64.Vector{Inc: 1, Data: q.Data[j*q.Stride:]},
)
if math.IsNaN(dot) {
return false
}
if i == j {
if math.Abs(dot-1) > 1e-10 {
return false
}
} else {
if math.Abs(dot) > 1e-10 {
return false
}
}
}
}
return true
}
// copyMatrix copies an m×n matrix src of stride n into an m×n matrix dst of stride ld.
func copyMatrix(m, n int, dst []float64, ld int, src []float64) {
for i := 0; i < m; i++ {
copy(dst[i*ld:i*ld+n], src[i*n:i*n+n])
}
}
func copyGeneral(dst, src blas64.General) {
r := min(dst.Rows, src.Rows)
c := min(dst.Cols, src.Cols)
for i := 0; i < r; i++ {
copy(dst.Data[i*dst.Stride:i*dst.Stride+c], src.Data[i*src.Stride:i*src.Stride+c])
}
}
// cloneGeneral allocates and returns an exact copy of the given general matrix.
func cloneGeneral(a blas64.General) blas64.General {
c := a
c.Data = make([]float64, len(a.Data))
copy(c.Data, a.Data)
return c
}
// equalApprox returns whether the matrices A and B of order n are approximately
// equal within given tolerance.
func equalApprox(m, n int, a []float64, lda int, b []float64, tol float64) bool {
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
diff := a[i*lda+j] - b[i*n+j]
if math.IsNaN(diff) || math.Abs(diff) > tol {
return false
}
}
}
return true
}
// equalApproxGeneral returns whether the general matrices a and b are
// approximately equal within given tolerance.
func equalApproxGeneral(a, b blas64.General, tol float64) bool {
if a.Rows != b.Rows || a.Cols != b.Cols {
panic("bad input")
}
for i := 0; i < a.Rows; i++ {
for j := 0; j < a.Cols; j++ {
diff := a.Data[i*a.Stride+j] - b.Data[i*b.Stride+j]
if math.IsNaN(diff) || math.Abs(diff) > tol {
return false
}
}
}
return true
}
// equalApproxTriangular returns whether the triangular matrices A and B of
// order n are approximately equal within given tolerance.
func equalApproxTriangular(upper bool, n int, a []float64, lda int, b []float64, tol float64) bool {
if upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
diff := a[i*lda+j] - b[i*n+j]
if math.IsNaN(diff) || math.Abs(diff) > tol {
return false
}
}
}
return true
}
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
diff := a[i*lda+j] - b[i*n+j]
if math.IsNaN(diff) || math.Abs(diff) > tol {
return false
}
}
}
return true
}
func equalApproxSymmetric(a, b blas64.Symmetric, tol float64) bool {
if a.Uplo != b.Uplo {
return false
}
if a.N != b.N {
return false
}
if a.Uplo == blas.Upper {
for i := 0; i < a.N; i++ {
for j := i; j < a.N; j++ {
if !floats.EqualWithinAbsOrRel(a.Data[i*a.Stride+j], b.Data[i*b.Stride+j], tol, tol) {
return false
}
}
}
return true
}
for i := 0; i < a.N; i++ {
for j := 0; j <= i; j++ {
if !floats.EqualWithinAbsOrRel(a.Data[i*a.Stride+j], b.Data[i*b.Stride+j], tol, tol) {
return false
}
}
}
return true
}
// randSymBand creates a random symmetric banded matrix, and returns both the
// random matrix and the equivalent Symmetric matrix for testing. rnder
// specifies the random number
func randSymBand(ul blas.Uplo, n, ldab, kb int, rnd *rand.Rand) (blas64.Symmetric, blas64.SymmetricBand) {
// A matrix is positive definite if and only if it has a Cholesky
// decomposition. Generate a random banded lower triangular matrix
// to construct the random symmetric matrix.
a := make([]float64, n*n)
for i := 0; i < n; i++ {
for j := max(0, i-kb); j <= i; j++ {
a[i*n+j] = rnd.NormFloat64()
}
a[i*n+i] = math.Abs(a[i*n+i])
// Add an extra amound to the diagonal in order to improve the condition number.
a[i*n+i] += 1.5 * rnd.Float64()
}
agen := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: a,
}
// Construct the SymDense from a*a^T
c := make([]float64, n*n)
cgen := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: c,
}
blas64.Gemm(blas.NoTrans, blas.Trans, 1, agen, agen, 0, cgen)
sym := blas64.Symmetric{
N: n,
Stride: n,
Data: c,
Uplo: ul,
}
b := symToSymBand(ul, c, n, n, kb, ldab)
band := blas64.SymmetricBand{
N: n,
K: kb,
Stride: ldab,
Data: b,
Uplo: ul,
}
return sym, band
}
// symToSymBand takes the data in a Symmetric matrix and returns a
// SymmetricBanded matrix.
func symToSymBand(ul blas.Uplo, a []float64, n, lda, kb, ldab int) []float64 {
if ul == blas.Upper {
band := make([]float64, (n-1)*ldab+kb+1)
for i := 0; i < n; i++ {
for j := i; j < min(i+kb+1, n); j++ {
band[i*ldab+j-i] = a[i*lda+j]
}
}
return band
}
band := make([]float64, (n-1)*ldab+kb+1)
for i := 0; i < n; i++ {
for j := max(0, i-kb); j <= i; j++ {
band[i*ldab+j-i+kb] = a[i*lda+j]
}
}
return band
}
// symBandToSym takes a banded symmetric matrix and returns the same data as
// a Symmetric matrix.
func symBandToSym(ul blas.Uplo, band []float64, n, kb, ldab int) blas64.Symmetric {
sym := make([]float64, n*n)
if ul == blas.Upper {
for i := 0; i < n; i++ {
for j := 0; j < min(kb+1+i, n)-i; j++ {
sym[i*n+i+j] = band[i*ldab+j]
}
}
} else {
for i := 0; i < n; i++ {
for j := kb - min(i, kb); j < kb+1; j++ {
sym[i*n+i-kb+j] = band[i*ldab+j]
}
}
}
return blas64.Symmetric{
N: n,
Stride: n,
Data: sym,
Uplo: ul,
}
}
// eye returns an identity matrix of given order and stride.
func eye(n, stride int) blas64.General {
ans := nanGeneral(n, n, stride)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
ans.Data[i*ans.Stride+j] = 0
}
ans.Data[i*ans.Stride+i] = 1
}
return ans
}
// zeros returns an m×n matrix with given stride filled with zeros.
func zeros(m, n, stride int) blas64.General {
a := nanGeneral(m, n, stride)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Data[i*a.Stride+j] = 0
}
}
return a
}
// extract2x2Block returns the elements of T at [0,0], [0,1], [1,0], and [1,1].
func extract2x2Block(t []float64, ldt int) (a, b, c, d float64) {
return t[0], t[1], t[ldt], t[ldt+1]
}
// isSchurCanonical returns whether the 2×2 matrix [a b; c d] is in Schur
// canonical form.
func isSchurCanonical(a, b, c, d float64) bool {
return c == 0 || (a == d && math.Signbit(b) != math.Signbit(c))
}
// isSchurCanonicalGeneral returns whether T is block upper triangular with 1×1
// and 2×2 diagonal blocks, each 2×2 block in Schur canonical form. The function
// checks only along the diagonal and the first subdiagonal, otherwise the lower
// triangle is not accessed.
func isSchurCanonicalGeneral(t blas64.General) bool {
if t.Rows != t.Cols {
panic("invalid matrix")
}
for i := 0; i < t.Rows-1; {
if t.Data[(i+1)*t.Stride+i] == 0 {
// 1×1 block.
i++
continue
}
// 2×2 block.
a, b, c, d := extract2x2Block(t.Data[i*t.Stride+i:], t.Stride)
if !isSchurCanonical(a, b, c, d) {
return false
}
i += 2
}
return true
}
// schurBlockEigenvalues returns the two eigenvalues of the 2×2 matrix [a b; c d]
// that must be in Schur canonical form.
func schurBlockEigenvalues(a, b, c, d float64) (ev1, ev2 complex128) {
if !isSchurCanonical(a, b, c, d) {
panic("block not in Schur canonical form")
}
if c == 0 {
return complex(a, 0), complex(d, 0)
}
im := math.Sqrt(-b * c)
return complex(a, im), complex(a, -im)
}
// schurBlockSize returns the size of the diagonal block at i-th row in the
// upper quasi-triangular matrix t in Schur canonical form, and whether i points
// to the first row of the block. For zero-sized matrices the function returns 0
// and true.
func schurBlockSize(t blas64.General, i int) (size int, first bool) {
if t.Rows != t.Cols {
panic("matrix not square")
}
if t.Rows == 0 {
return 0, true
}
if i < 0 || t.Rows <= i {
panic("index out of range")
}
first = true
if i > 0 && t.Data[i*t.Stride+i-1] != 0 {
// There is a non-zero element to the left, therefore i must
// point to the second row in a 2×2 diagonal block.
first = false
i--
}
size = 1
if i+1 < t.Rows && t.Data[(i+1)*t.Stride+i] != 0 {
// There is a non-zero element below, this must be a 2×2
// diagonal block.
size = 2
}
return size, first
}
// containsComplex returns whether z is approximately equal to one of the complex
// numbers in v. If z is found, its index in v will be also returned.
func containsComplex(v []complex128, z complex128, tol float64) (found bool, index int) {
for i := range v {
if cmplx.Abs(v[i]-z) < tol {
return true, i
}
}
return false, -1
}
// isAllNaN returns whether x contains only NaN values.
func isAllNaN(x []float64) bool {
for _, v := range x {
if !math.IsNaN(v) {
return false
}
}
return true
}
// isUpperHessenberg returns whether h contains only zeros below the
// subdiagonal.
func isUpperHessenberg(h blas64.General) bool {
if h.Rows != h.Cols {
panic("matrix not square")
}
n := h.Rows
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
if i > j+1 && h.Data[i*h.Stride+j] != 0 {
return false
}
}
}
return true
}
// isUpperTriangular returns whether a contains only zeros below the diagonal.
func isUpperTriangular(a blas64.General) bool {
n := a.Rows
for i := 1; i < n; i++ {
for j := 0; j < i; j++ {
if a.Data[i*a.Stride+j] != 0 {
return false
}
}
}
return true
}
// unbalancedSparseGeneral returns an m×n dense matrix with a random sparse
// structure consisting of nz nonzero elements. The matrix will be unbalanced by
// multiplying each element randomly by its row or column index.
func unbalancedSparseGeneral(m, n, stride int, nonzeros int, rnd *rand.Rand) blas64.General {
a := zeros(m, n, stride)
for k := 0; k < nonzeros; k++ {
i := rnd.Intn(n)
j := rnd.Intn(n)
if rnd.Float64() < 0.5 {
a.Data[i*stride+j] = float64(i+1) * rnd.NormFloat64()
} else {
a.Data[i*stride+j] = float64(j+1) * rnd.NormFloat64()
}
}
return a
}
// columnOf returns a copy of the j-th column of a.
func columnOf(a blas64.General, j int) []float64 {
if j < 0 || a.Cols <= j {
panic("bad column index")
}
col := make([]float64, a.Rows)
for i := range col {
col[i] = a.Data[i*a.Stride+j]
}
return col
}
// isRightEigenvectorOf returns whether the vector xRe+i*xIm, where i is the
// imaginary unit, is the right eigenvector of A corresponding to the eigenvalue
// lambda.
//
// A right eigenvector corresponding to a complex eigenvalue λ is a complex
// non-zero vector x such that
// A x = λ x.
func isRightEigenvectorOf(a blas64.General, xRe, xIm []float64, lambda complex128, tol float64) bool {
if a.Rows != a.Cols {
panic("matrix not square")
}
if imag(lambda) != 0 && xIm == nil {
// Complex eigenvalue of a real matrix cannot have a real
// eigenvector.
return false
}
n := a.Rows
// Compute A real(x) and store the result into xReAns.
xReAns := make([]float64, n)
blas64.Gemv(blas.NoTrans, 1, a, blas64.Vector{1, xRe}, 0, blas64.Vector{1, xReAns})
if imag(lambda) == 0 && xIm == nil {
// Real eigenvalue and eigenvector.
// Compute λx and store the result into lambdax.
lambdax := make([]float64, n)
floats.AddScaled(lambdax, real(lambda), xRe)
// This is expressed as the inverse to catch the case
// xReAns_i = Inf and lambdax_i = Inf of the same sign.
return !(floats.Distance(xReAns, lambdax, math.Inf(1)) > tol)
}
// Complex eigenvector, and real or complex eigenvalue.
// Compute A imag(x) and store the result into xImAns.
xImAns := make([]float64, n)
blas64.Gemv(blas.NoTrans, 1, a, blas64.Vector{1, xIm}, 0, blas64.Vector{1, xImAns})
// Compute λx and store the result into lambdax.
lambdax := make([]complex128, n)
for i := range lambdax {
lambdax[i] = lambda * complex(xRe[i], xIm[i])
}
for i, v := range lambdax {
ax := complex(xReAns[i], xImAns[i])
if cmplx.Abs(v-ax) > tol {
return false
}
}
return true
}
// isLeftEigenvectorOf returns whether the vector yRe+i*yIm, where i is the
// imaginary unit, is the left eigenvector of A corresponding to the eigenvalue
// lambda.
//
// A left eigenvector corresponding to a complex eigenvalue λ is a complex
// non-zero vector y such that
// y^H A = λ y^H,
// which is equivalent for real A to
// A^T y = conj(λ) y,
func isLeftEigenvectorOf(a blas64.General, yRe, yIm []float64, lambda complex128, tol float64) bool {
if a.Rows != a.Cols {
panic("matrix not square")
}
if imag(lambda) != 0 && yIm == nil {
// Complex eigenvalue of a real matrix cannot have a real
// eigenvector.
return false
}
n := a.Rows
// Compute A^T real(y) and store the result into yReAns.
yReAns := make([]float64, n)
blas64.Gemv(blas.Trans, 1, a, blas64.Vector{1, yRe}, 0, blas64.Vector{1, yReAns})
if imag(lambda) == 0 && yIm == nil {
// Real eigenvalue and eigenvector.
// Compute λy and store the result into lambday.
lambday := make([]float64, n)
floats.AddScaled(lambday, real(lambda), yRe)
// This is expressed as the inverse to catch the case
// yReAns_i = Inf and lambday_i = Inf of the same sign.
return !(floats.Distance(yReAns, lambday, math.Inf(1)) > tol)
}
// Complex eigenvector, and real or complex eigenvalue.
// Compute A^T imag(y) and store the result into yImAns.
yImAns := make([]float64, n)
blas64.Gemv(blas.Trans, 1, a, blas64.Vector{1, yIm}, 0, blas64.Vector{1, yImAns})
// Compute conj(λ)y and store the result into lambday.
lambda = cmplx.Conj(lambda)
lambday := make([]complex128, n)
for i := range lambday {
lambday[i] = lambda * complex(yRe[i], yIm[i])
}
for i, v := range lambday {
ay := complex(yReAns[i], yImAns[i])
if cmplx.Abs(v-ay) > tol {
return false
}
}
return true
}
// rootsOfUnity returns the n complex numbers whose n-th power is equal to 1.
func rootsOfUnity(n int) []complex128 {
w := make([]complex128, n)
for i := 0; i < n; i++ {
angle := math.Pi * float64(2*i) / float64(n)
w[i] = complex(math.Cos(angle), math.Sin(angle))
}
return w
}
// randomOrthogonal returns an n×n random orthogonal matrix.
func randomOrthogonal(n int, rnd *rand.Rand) blas64.General {
q := eye(n, n)
x := make([]float64, n)
v := make([]float64, n)
for j := 0; j < n-1; j++ {
// x represents the j-th column of a random matrix.
for i := 0; i < j; i++ {
x[i] = 0
}
for i := j; i < n; i++ {
x[i] = rnd.NormFloat64()
}
// Compute v that represents the elementary reflector that
// annihilates the subdiagonal elements of x.
reflector(v, x, j)
// Compute Q * H_j and store the result into Q.
applyReflector(q, q, v)
}
if !isOrthonormal(q) {
panic("Q not orthogonal")
}
return q
}
// reflector generates a Householder reflector v that zeros out subdiagonal
// entries in the j-th column of a matrix.
func reflector(v, col []float64, j int) {
n := len(col)
if len(v) != n {
panic("slice length mismatch")
}
if j < 0 || n <= j {
panic("invalid column index")
}
for i := range v {
v[i] = 0
}
if j == n-1 {
return
}
s := floats.Norm(col[j:], 2)
if s == 0 {
return
}
v[j] = col[j] + math.Copysign(s, col[j])
copy(v[j+1:], col[j+1:])
s = floats.Norm(v[j:], 2)
floats.Scale(1/s, v[j:])
}
// applyReflector computes Q*H where H is a Householder matrix represented by
// the Householder reflector v.
func applyReflector(qh blas64.General, q blas64.General, v []float64) {
n := len(v)
if qh.Rows != n || qh.Cols != n {
panic("bad size of qh")
}
if q.Rows != n || q.Cols != n {
panic("bad size of q")
}
qv := make([]float64, n)
blas64.Gemv(blas.NoTrans, 1, q, blas64.Vector{1, v}, 0, blas64.Vector{1, qv})
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
qh.Data[i*qh.Stride+j] = q.Data[i*q.Stride+j]
}
}
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
qh.Data[i*qh.Stride+j] -= 2 * qv[i] * v[j]
}
}
var norm2 float64
for _, vi := range v {
norm2 += vi * vi
}
norm2inv := 1 / norm2
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
qh.Data[i*qh.Stride+j] *= norm2inv
}
}
}
// constructGSVDresults returns the matrices [ 0 R ], D1 and D2 described
// in the documentation of Dtgsja and Dggsvd3, and the result matrix in
// the documentation for Dggsvp3.
func constructGSVDresults(n, p, m, k, l int, a, b blas64.General, alpha, beta []float64) (zeroR, d1, d2 blas64.General) {
// [ 0 R ]
zeroR = zeros(k+l, n, n)
dst := zeroR
dst.Rows = min(m, k+l)
dst.Cols = k + l
dst.Data = zeroR.Data[n-k-l:]
src := a
src.Rows = min(m, k+l)
src.Cols = k + l
src.Data = a.Data[n-k-l:]
copyGeneral(dst, src)
if m < k+l {
// [ 0 R ]
dst.Rows = k + l - m
dst.Cols = k + l - m
dst.Data = zeroR.Data[m*zeroR.Stride+n-(k+l-m):]
src = b
src.Rows = k + l - m
src.Cols = k + l - m
src.Data = b.Data[(m-k)*b.Stride+n+m-k-l:]
copyGeneral(dst, src)
}
// D1
d1 = zeros(m, k+l, k+l)
for i := 0; i < k; i++ {
d1.Data[i*d1.Stride+i] = 1
}
for i := k; i < min(m, k+l); i++ {
d1.Data[i*d1.Stride+i] = alpha[i]
}
// D2
d2 = zeros(p, k+l, k+l)
for i := 0; i < min(l, m-k); i++ {
d2.Data[i*d2.Stride+i+k] = beta[k+i]
}
for i := m - k; i < l; i++ {
d2.Data[i*d2.Stride+i+k] = 1
}
return zeroR, d1, d2
}
func constructGSVPresults(n, p, m, k, l int, a, b blas64.General) (zeroA, zeroB blas64.General) {
zeroA = zeros(m, n, n)
dst := zeroA
dst.Rows = min(m, k+l)
dst.Cols = k + l
dst.Data = zeroA.Data[n-k-l:]
src := a
dst.Rows = min(m, k+l)
src.Cols = k + l
src.Data = a.Data[n-k-l:]
copyGeneral(dst, src)
zeroB = zeros(p, n, n)
dst = zeroB
dst.Rows = l
dst.Cols = l
dst.Data = zeroB.Data[n-l:]
src = b
dst.Rows = l
src.Cols = l
src.Data = b.Data[n-l:]
copyGeneral(dst, src)
return zeroA, zeroB
}