blob: 60c51241f74c94a14ef42475030c050e64e27ad4 [file] [log] [blame]
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"math/rand"
"testing"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
type Dtrevc3er interface {
Dtrevc3(side lapack.EVSide, howmny lapack.HowMany, selected []bool, n int, t []float64, ldt int, vl []float64, ldvl int, vr []float64, ldvr int, mm int, work []float64, lwork int) int
}
func Dtrevc3Test(t *testing.T, impl Dtrevc3er) {
rnd := rand.New(rand.NewSource(1))
for _, side := range []lapack.EVSide{lapack.RightEV, lapack.LeftEV, lapack.RightLeftEV} {
for _, howmny := range []lapack.HowMany{lapack.AllEV, lapack.AllEVMulQ, lapack.SelectedEV} {
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 34, 100} {
for _, extra := range []int{0, 11} {
for _, optwork := range []bool{true, false} {
for cas := 0; cas < 10; cas++ {
tmat := randomSchurCanonical(n, n+extra, rnd)
testDtrevc3(t, impl, side, howmny, tmat, optwork, rnd)
}
}
}
}
}
}
}
func testDtrevc3(t *testing.T, impl Dtrevc3er, side lapack.EVSide, howmny lapack.HowMany, tmat blas64.General, optwork bool, rnd *rand.Rand) {
const tol = 1e-14
n := tmat.Rows
extra := tmat.Stride - tmat.Cols
right := side != lapack.LeftEV
left := side != lapack.RightEV
var selected, selectedWant []bool
var mWant int // How many columns will the eigenvectors occupy.
if howmny == lapack.SelectedEV {
selected = make([]bool, n)
selectedWant = make([]bool, n)
// Dtrevc3 will compute only selected eigenvectors. Pick them
// randomly disregarding whether they are real or complex.
for i := range selected {
if rnd.Float64() < 0.5 {
selected[i] = true
}
}
// Dtrevc3 will modify (standardize) the slice selected based on
// whether the corresponding eigenvalues are real or complex. Do
// the same process here to fill selectedWant.
for i := 0; i < n; {
if i == n-1 || tmat.Data[(i+1)*tmat.Stride+i] == 0 {
// Real eigenvalue.
if selected[i] {
selectedWant[i] = true
mWant++ // Real eigenvectors occupy one column.
}
i++
} else {
// Complex eigenvalue.
if selected[i] || selected[i+1] {
// Dtrevc3 will modify selected so that
// only the first element of the pair is
// true.
selectedWant[i] = true
mWant += 2 // Complex eigenvectors occupy two columns.
}
i += 2
}
}
} else {
// All eigenvectors occupy n columns.
mWant = n
}
var vr blas64.General
if right {
if howmny == lapack.AllEVMulQ {
vr = eye(n, n+extra)
} else {
// VR will be overwritten.
vr = nanGeneral(n, mWant, n+extra)
}
}
var vl blas64.General
if left {
if howmny == lapack.AllEVMulQ {
vl = eye(n, n+extra)
} else {
// VL will be overwritten.
vl = nanGeneral(n, mWant, n+extra)
}
}
work := make([]float64, max(1, 3*n))
if optwork {
impl.Dtrevc3(side, howmny, nil, n, nil, 1, nil, 1, nil, 1, mWant, work, -1)
work = make([]float64, int(work[0]))
}
m := impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
vl.Data, vl.Stride, vr.Data, vr.Stride, mWant, work, len(work))
prefix := fmt.Sprintf("Case side=%v, howmny=%v, n=%v, extra=%v, optwk=%v",
side, howmny, n, extra, optwork)
if !generalOutsideAllNaN(tmat) {
t.Errorf("%v: out-of-range write to T", prefix)
}
if !generalOutsideAllNaN(vl) {
t.Errorf("%v: out-of-range write to VL", prefix)
}
if !generalOutsideAllNaN(vr) {
t.Errorf("%v: out-of-range write to VR", prefix)
}
if m != mWant {
t.Errorf("%v: unexpected value of m. Want %v, got %v", prefix, mWant, m)
}
if howmny == lapack.SelectedEV {
for i := range selected {
if selected[i] != selectedWant[i] {
t.Errorf("%v: unexpected selected[%v]", prefix, i)
}
}
}
// Check that the columns of VR and VL are actually eigenvectors and
// that the magnitude of their largest element is 1.
var k int
for j := 0; j < n; {
re := tmat.Data[j*tmat.Stride+j]
if j == n-1 || tmat.Data[(j+1)*tmat.Stride+j] == 0 {
if howmny == lapack.SelectedEV && !selected[j] {
j++
continue
}
if right {
ev := columnOf(vr, k)
norm := floats.Norm(ev, math.Inf(1))
if math.Abs(norm-1) > tol {
t.Errorf("%v: magnitude of largest element of VR[:,%v] not 1", prefix, k)
}
if !isRightEigenvectorOf(tmat, ev, nil, complex(re, 0), tol) {
t.Errorf("%v: VR[:,%v] is not real right eigenvector", prefix, k)
}
}
if left {
ev := columnOf(vl, k)
norm := floats.Norm(ev, math.Inf(1))
if math.Abs(norm-1) > tol {
t.Errorf("%v: magnitude of largest element of VL[:,%v] not 1", prefix, k)
}
if !isLeftEigenvectorOf(tmat, ev, nil, complex(re, 0), tol) {
t.Errorf("%v: VL[:,%v] is not real left eigenvector", prefix, k)
}
}
k++
j++
continue
}
if howmny == lapack.SelectedEV && !selected[j] {
j += 2
continue
}
im := math.Sqrt(math.Abs(tmat.Data[(j+1)*tmat.Stride+j])) *
math.Sqrt(math.Abs(tmat.Data[j*tmat.Stride+j+1]))
if right {
evre := columnOf(vr, k)
evim := columnOf(vr, k+1)
var evmax float64
for i, v := range evre {
evmax = math.Max(evmax, math.Abs(v)+math.Abs(evim[i]))
}
if math.Abs(evmax-1) > tol {
t.Errorf("%v: magnitude of largest element of VR[:,%v] not 1", prefix, k)
}
if !isRightEigenvectorOf(tmat, evre, evim, complex(re, im), tol) {
t.Errorf("%v: VR[:,%v:%v] is not complex right eigenvector", prefix, k, k+1)
}
floats.Scale(-1, evim)
if !isRightEigenvectorOf(tmat, evre, evim, complex(re, -im), tol) {
t.Errorf("%v: VR[:,%v:%v] is not complex right eigenvector", prefix, k, k+1)
}
}
if left {
evre := columnOf(vl, k)
evim := columnOf(vl, k+1)
var evmax float64
for i, v := range evre {
evmax = math.Max(evmax, math.Abs(v)+math.Abs(evim[i]))
}
if math.Abs(evmax-1) > tol {
t.Errorf("%v: magnitude of largest element of VL[:,%v] not 1", prefix, k)
}
if !isLeftEigenvectorOf(tmat, evre, evim, complex(re, im), tol) {
t.Errorf("%v: VL[:,%v:%v] is not complex left eigenvector", prefix, k, k+1)
}
floats.Scale(-1, evim)
if !isLeftEigenvectorOf(tmat, evre, evim, complex(re, -im), tol) {
t.Errorf("%v: VL[:,%v:%v] is not complex left eigenvector", prefix, k, k+1)
}
}
k += 2
j += 2
}
}