blob: 012b8707372cbae9fa427b3444cd3f32d4fc04f0 [file] [log] [blame]
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"math/rand"
"testing"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
type Dgehrder interface {
Dgehrd(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int)
Dorgqr(m, n, k int, a []float64, lda int, tau, work []float64, lwork int)
}
func DgehrdTest(t *testing.T, impl Dgehrder) {
rnd := rand.New(rand.NewSource(1))
// Randomized tests for small matrix sizes that will most likely
// use the unblocked algorithm.
for _, n := range []int{1, 2, 3, 4, 5, 10, 34} {
for _, extra := range []int{0, 13} {
for _, optwork := range []bool{true, false} {
for cas := 0; cas < 10; cas++ {
ilo := rnd.Intn(n)
ihi := rnd.Intn(n)
if ilo > ihi {
ilo, ihi = ihi, ilo
}
testDgehrd(t, impl, n, ilo, ihi, extra, optwork, rnd)
}
}
}
}
// These are selected tests for larger matrix sizes to test the blocked
// algorithm. Use sizes around several powers of two because that is
// where the blocked path will most likely start to be taken. For
// example, at present the blocked algorithm is used for sizes larger
// than 129.
for _, test := range []struct {
n, ilo, ihi int
}{
{0, 0, -1},
{68, 0, 63},
{68, 0, 64},
{68, 0, 65},
{68, 0, 66},
{68, 0, 67},
{132, 2, 129},
{132, 1, 129}, // Size = 129, unblocked.
{132, 0, 129}, // Size = 130, blocked.
{132, 1, 130},
{132, 0, 130},
{132, 1, 131},
{132, 0, 131},
{260, 2, 257},
{260, 1, 257},
{260, 0, 257},
{260, 0, 258},
{260, 0, 259},
} {
for _, extra := range []int{0, 13} {
for _, optwork := range []bool{true, false} {
testDgehrd(t, impl, test.n, test.ilo, test.ihi, extra, optwork, rnd)
}
}
}
}
func testDgehrd(t *testing.T, impl Dgehrder, n, ilo, ihi, extra int, optwork bool, rnd *rand.Rand) {
a := randomGeneral(n, n, n+extra, rnd)
aCopy := a
aCopy.Data = make([]float64, len(a.Data))
copy(aCopy.Data, a.Data)
var tau []float64
if n > 1 {
tau = nanSlice(n - 1)
}
var work []float64
if optwork {
work = nanSlice(1)
impl.Dgehrd(n, ilo, ihi, nil, a.Stride, nil, work, -1)
work = nanSlice(int(work[0]))
} else {
work = nanSlice(max(1, n))
}
impl.Dgehrd(n, ilo, ihi, a.Data, a.Stride, tau, work, len(work))
if n == 0 {
// Just make sure there is no panic.
return
}
prefix := fmt.Sprintf("Case n=%v, ilo=%v, ihi=%v, extra=%v", n, ilo, ihi, extra)
// Check any invalid modifications of a.
if !generalOutsideAllNaN(a) {
t.Errorf("%v: out-of-range write to A\n%v", prefix, a.Data)
}
for i := ilo; i <= ihi; i++ {
for j := 0; j < min(ilo, i); j++ {
if a.Data[i*a.Stride+j] != aCopy.Data[i*aCopy.Stride+j] {
t.Errorf("%v: unexpected modification of A[%v,%v]", prefix, i, j)
}
}
}
for i := ihi + 1; i < n; i++ {
for j := 0; j < i; j++ {
if a.Data[i*a.Stride+j] != aCopy.Data[i*aCopy.Stride+j] {
t.Errorf("%v: unexpected modification of A[%v,%v]", prefix, i, j)
}
}
}
for i := 0; i <= ilo; i++ {
for j := i; j < ilo+1; j++ {
if a.Data[i*a.Stride+j] != aCopy.Data[i*aCopy.Stride+j] {
t.Errorf("%v: unexpected modification at A[%v,%v]", prefix, i, j)
}
}
for j := ihi + 1; j < n; j++ {
if a.Data[i*a.Stride+j] != aCopy.Data[i*aCopy.Stride+j] {
t.Errorf("%v: unexpected modification at A[%v,%v]", prefix, i, j)
}
}
}
for i := ihi + 1; i < n; i++ {
for j := i; j < n; j++ {
if a.Data[i*a.Stride+j] != aCopy.Data[i*aCopy.Stride+j] {
t.Errorf("%v: unexpected modification at A[%v,%v]", prefix, i, j)
}
}
}
// Check that tau has been assigned properly.
for i, v := range tau {
if math.IsNaN(v) {
t.Errorf("%v: unexpected NaN at tau[%v]", prefix, i)
}
}
// Extract Q and check that it is orthogonal.
q := eye(n, n)
if ilo != ihi {
for i := ilo + 2; i <= ihi; i++ {
for j := ilo + 1; j < ihi; j++ {
q.Data[i*q.Stride+j] = a.Data[i*a.Stride+j-1]
}
}
nh := ihi - ilo
impl.Dorgqr(nh, nh, nh, q.Data[(ilo+1)*q.Stride+ilo+1:], q.Stride, tau[ilo:ihi], work, len(work))
}
if !isOrthonormal(q) {
t.Errorf("%v: Q is not orthogonal\nQ=%v", prefix, q)
}
// Construct Q^T * AOrig * Q and check that it is upper Hessenberg.
aq := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aCopy, q, 0, aq)
qaq := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, aq, 0, qaq)
for i := 0; i <= ilo; i++ {
for j := ilo + 1; j <= ihi; j++ {
qaqij := qaq.Data[i*qaq.Stride+j]
diff := qaqij - a.Data[i*a.Stride+j]
if math.Abs(diff) > 1e-13 {
t.Errorf("%v: Q^T*AOrig*Q and A are not equal, diff at [%v,%v]=%v", prefix, i, j, diff)
}
}
}
for i := ilo + 1; i <= ihi; i++ {
for j := ilo; j < n; j++ {
qaqij := qaq.Data[i*qaq.Stride+j]
if j < i-1 {
if math.Abs(qaqij) > 1e-13 {
t.Errorf("%v: Q^T*AOrig*Q is not upper Hessenberg, [%v,%v]=%v", prefix, i, j, qaqij)
}
continue
}
diff := qaqij - a.Data[i*a.Stride+j]
if math.Abs(diff) > 1e-13 {
t.Errorf("%v: Q^T*AOrig*Q and A are not equal, diff at [%v,%v]=%v", prefix, i, j, diff)
}
}
}
}