blob: 9a36e1c59203bf70e787f9ba287eb7df675d3af6 [file] [log] [blame]
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dsteqr computes the eigenvalues and optionally the eigenvectors of a symmetric
// tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a
// full or band symmetric matrix can also be found if Dsytrd, Dsptrd, or Dsbtrd
// have been used to reduce this matrix to tridiagonal form.
//
// d, on entry, contains the diagonal elements of the tridiagonal matrix. On exit,
// d contains the eigenvalues in ascending order. d must have length n and
// Dsteqr will panic otherwise.
//
// e, on entry, contains the off-diagonal elements of the tridiagonal matrix on
// entry, and is overwritten during the call to Dsteqr. e must have length n-1 and
// Dsteqr will panic otherwise.
//
// z, on entry, contains the n×n orthogonal matrix used in the reduction to
// tridiagonal form if compz == lapack.OriginalEV. On exit, if
// compz == lapack.OriginalEV, z contains the orthonormal eigenvectors of the
// original symmetric matrix, and if compz == lapack.TridiagEV, z contains the
// orthonormal eigenvectors of the symmetric tridiagonal matrix. z is not used
// if compz == lapack.None.
//
// work must have length at least max(1, 2*n-2) if the eigenvectors are computed,
// and Dsteqr will panic otherwise.
//
// Dsteqr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dsteqr(compz lapack.EVComp, n int, d, e, z []float64, ldz int, work []float64) (ok bool) {
if n < 0 {
panic(nLT0)
}
if len(d) < n {
panic(badD)
}
if len(e) < n-1 {
panic(badE)
}
if compz != lapack.None && compz != lapack.TridiagEV && compz != lapack.OriginalEV {
panic(badEVComp)
}
if compz != lapack.None {
if len(work) < max(1, 2*n-2) {
panic(badWork)
}
checkMatrix(n, n, z, ldz)
}
var icompz int
if compz == lapack.OriginalEV {
icompz = 1
} else if compz == lapack.TridiagEV {
icompz = 2
}
if n == 0 {
return true
}
if n == 1 {
if icompz == 2 {
z[0] = 1
}
return true
}
bi := blas64.Implementation()
eps := dlamchE
eps2 := eps * eps
safmin := dlamchS
safmax := 1 / safmin
ssfmax := math.Sqrt(safmax) / 3
ssfmin := math.Sqrt(safmin) / eps2
// Compute the eigenvalues and eigenvectors of the tridiagonal matrix.
if icompz == 2 {
impl.Dlaset(blas.All, n, n, 0, 1, z, ldz)
}
const maxit = 30
nmaxit := n * maxit
jtot := 0
// Determine where the matrix splits and choose QL or QR iteration for each
// block, according to whether top or bottom diagonal element is smaller.
l1 := 0
nm1 := n - 1
type scaletype int
const (
down scaletype = iota + 1
up
)
var iscale scaletype
for {
if l1 > n-1 {
// Order eigenvalues and eigenvectors.
if icompz == 0 {
impl.Dlasrt(lapack.SortIncreasing, n, d)
} else {
// TODO(btracey): Consider replacing this sort with a call to sort.Sort.
for ii := 1; ii < n; ii++ {
i := ii - 1
k := i
p := d[i]
for j := ii; j < n; j++ {
if d[j] < p {
k = j
p = d[j]
}
}
if k != i {
d[k] = d[i]
d[i] = p
bi.Dswap(n, z[i:], ldz, z[k:], ldz)
}
}
}
return true
}
if l1 > 0 {
e[l1-1] = 0
}
var m int
if l1 <= nm1 {
for m = l1; m < nm1; m++ {
test := math.Abs(e[m])
if test == 0 {
break
}
if test <= (math.Sqrt(math.Abs(d[m]))*math.Sqrt(math.Abs(d[m+1])))*eps {
e[m] = 0
break
}
}
}
l := l1
lsv := l
lend := m
lendsv := lend
l1 = m + 1
if lend == l {
continue
}
// Scale submatrix in rows and columns L to Lend
anorm := impl.Dlanst(lapack.MaxAbs, lend-l+1, d[l:], e[l:])
switch {
case anorm == 0:
continue
case anorm > ssfmax:
iscale = down
// Pretend that d and e are matrices with 1 column.
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l+1, 1, d[l:], 1)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l, 1, e[l:], 1)
case anorm < ssfmin:
iscale = up
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l+1, 1, d[l:], 1)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l, 1, e[l:], 1)
}
// Choose between QL and QR.
if math.Abs(d[lend]) < math.Abs(d[l]) {
lend = lsv
l = lendsv
}
if lend > l {
// QL Iteration. Look for small subdiagonal element.
for {
if l != lend {
for m = l; m < lend; m++ {
v := math.Abs(e[m])
if v*v <= (eps2*math.Abs(d[m]))*math.Abs(d[m+1])+safmin {
break
}
}
} else {
m = lend
}
if m < lend {
e[m] = 0
}
p := d[l]
if m == l {
// Eigenvalue found.
l++
if l > lend {
break
}
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigensystem.
if m == l+1 {
if icompz > 0 {
d[l], d[l+1], work[l], work[n-1+l] = impl.Dlaev2(d[l], e[l], d[l+1])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, 2, work[l:], work[n-1+l:], z[l:], ldz)
} else {
d[l], d[l+1] = impl.Dlae2(d[l], e[l], d[l+1])
}
e[l] = 0
l += 2
if l > lend {
break
}
continue
}
if jtot == nmaxit {
break
}
jtot++
// Form shift
g := (d[l+1] - p) / (2 * e[l])
r := impl.Dlapy2(g, 1)
g = d[m] - p + e[l]/(g+math.Copysign(r, g))
s := 1.0
c := 1.0
p = 0.0
// Inner loop
for i := m - 1; i >= l; i-- {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m-1 {
e[i+1] = r
}
g = d[i+1] - p
r = (d[i]-g)*s + 2*c*b
p = s * r
d[i+1] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = -s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := m - l + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, mm, work[l:], work[n-1+l:], z[l:], ldz)
}
d[l] -= p
e[l] = g
}
} else {
// QR Iteration.
// Look for small superdiagonal element.
for {
if l != lend {
for m = l; m > lend; m-- {
v := math.Abs(e[m-1])
if v*v <= (eps2*math.Abs(d[m])*math.Abs(d[m-1]) + safmin) {
break
}
}
} else {
m = lend
}
if m > lend {
e[m-1] = 0
}
p := d[l]
if m == l {
// Eigenvalue found
l--
if l < lend {
break
}
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigenvalues.
if m == l-1 {
if icompz > 0 {
d[l-1], d[l], work[m], work[n-1+m] = impl.Dlaev2(d[l-1], e[l-1], d[l])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, 2, work[m:], work[n-1+m:], z[l-1:], ldz)
} else {
d[l-1], d[l] = impl.Dlae2(d[l-1], e[l-1], d[l])
}
e[l-1] = 0
l -= 2
if l < lend {
break
}
continue
}
if jtot == nmaxit {
break
}
jtot++
// Form shift.
g := (d[l-1] - p) / (2 * e[l-1])
r := impl.Dlapy2(g, 1)
g = d[m] - p + (e[l-1])/(g+math.Copysign(r, g))
s := 1.0
c := 1.0
p = 0.0
// Inner loop.
for i := m; i < l; i++ {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m {
e[i-1] = r
}
g = d[i] - p
r = (d[i+1]-g)*s + 2*c*b
p = s * r
d[i] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := l - m + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, mm, work[m:], work[n-1+m:], z[m:], ldz)
}
d[l] -= p
e[l-1] = g
}
}
// Undo scaling if necessary.
switch iscale {
case down:
// Pretend that d and e are matrices with 1 column.
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv+1, 1, d[lsv:], 1)
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv, 1, e[lsv:], 1)
case up:
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv+1, 1, d[lsv:], 1)
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv, 1, e[lsv:], 1)
}
// Check for no convergence to an eigenvalue after a total of n*maxit iterations.
if jtot >= nmaxit {
break
}
}
for i := 0; i < n-1; i++ {
if e[i] != 0 {
return false
}
}
return true
}