blob: 6db4d98d99fefcc8a02dbae4b8aab6fd49c3023f [file] [log] [blame]
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
)
// Dlaqr04 computes the eigenvalues of a block of an n×n upper Hessenberg matrix
// H, and optionally the matrices T and Z from the Schur decomposition
// H = Z T Z^T
// where T is an upper quasi-triangular matrix (the Schur form), and Z is the
// orthogonal matrix of Schur vectors.
//
// wantt indicates whether the full Schur form T is required. If wantt is false,
// then only enough of H will be updated to preserve the eigenvalues.
//
// wantz indicates whether the n×n matrix of Schur vectors Z is required. If it
// is true, the orthogonal similarity transformation will be accumulated into
// Z[iloz:ihiz+1,ilo:ihi+1], otherwise Z will not be referenced.
//
// ilo and ihi determine the block of H on which Dlaqr04 operates. It must hold that
// 0 <= ilo <= ihi < n, if n > 0,
// ilo == 0 and ihi == -1, if n == 0,
// and the block must be isolated, that is,
// ilo == 0 or H[ilo,ilo-1] == 0,
// ihi == n-1 or H[ihi+1,ihi] == 0,
// otherwise Dlaqr04 will panic.
//
// wr and wi must have length ihi+1.
//
// iloz and ihiz specify the rows of Z to which transformations will be applied
// if wantz is true. It must hold that
// 0 <= iloz <= ilo, and ihi <= ihiz < n,
// otherwise Dlaqr04 will panic.
//
// work must have length at least lwork and lwork must be
// lwork >= 1, if n <= 11,
// lwork >= n, if n > 11,
// otherwise Dlaqr04 will panic. lwork as large as 6*n may be required for
// optimal performance. On return, work[0] will contain the optimal value of
// lwork.
//
// If lwork is -1, instead of performing Dlaqr04, the function only estimates the
// optimal workspace size and stores it into work[0]. Neither h nor z are
// accessed.
//
// recur is the non-negative recursion depth. For recur > 0, Dlaqr04 behaves
// as DLAQR0, for recur == 0 it behaves as DLAQR4.
//
// unconverged indicates whether Dlaqr04 computed all the eigenvalues of H[ilo:ihi+1,ilo:ihi+1].
//
// If unconverged is zero and wantt is true, H will contain on return the upper
// quasi-triangular matrix T from the Schur decomposition. 2×2 diagonal blocks
// (corresponding to complex conjugate pairs of eigenvalues) will be returned in
// standard form, with H[i,i] == H[i+1,i+1] and H[i+1,i]*H[i,i+1] < 0.
//
// If unconverged is zero and if wantt is false, the contents of h on return is
// unspecified.
//
// If unconverged is zero, all the eigenvalues have been computed and their real
// and imaginary parts will be stored on return in wr[ilo:ihi+1] and
// wi[ilo:ihi+1], respectively. If two eigenvalues are computed as a complex
// conjugate pair, they are stored in consecutive elements of wr and wi, say the
// i-th and (i+1)th, with wi[i] > 0 and wi[i+1] < 0. If wantt is true, then the
// eigenvalues are stored in the same order as on the diagonal of the Schur form
// returned in H, with wr[i] = H[i,i] and, if H[i:i+2,i:i+2] is a 2×2 diagonal
// block, wi[i] = sqrt(-H[i+1,i]*H[i,i+1]) and wi[i+1] = -wi[i].
//
// If unconverged is positive, some eigenvalues have not converged, and
// wr[unconverged:ihi+1] and wi[unconverged:ihi+1] will contain those
// eigenvalues which have been successfully computed. Failures are rare.
//
// If unconverged is positive and wantt is true, then on return
// (initial H)*U = U*(final H), (*)
// where U is an orthogonal matrix. The final H is upper Hessenberg and
// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
//
// If unconverged is positive and wantt is false, on return the remaining
// unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix
// H[ilo:unconverged,ilo:unconverged].
//
// If unconverged is positive and wantz is true, then on return
// (final Z) = (initial Z)*U,
// where U is the orthogonal matrix in (*) regardless of the value of wantt.
//
// References:
// [1] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part I:
// Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix
// Anal. Appl. 23(4) (2002), pp. 929—947
// URL: http://dx.doi.org/10.1137/S0895479801384573
// [2] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part II:
// Aggressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4) (2002), pp. 948—973
// URL: http://dx.doi.org/10.1137/S0895479801384585
//
// Dlaqr04 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlaqr04(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int, work []float64, lwork int, recur int) (unconverged int) {
const (
// Matrices of order ntiny or smaller must be processed by
// Dlahqr because of insufficient subdiagonal scratch space.
// This is a hard limit.
ntiny = 11
// Exceptional deflation windows: try to cure rare slow
// convergence by varying the size of the deflation window after
// kexnw iterations.
kexnw = 5
// Exceptional shifts: try to cure rare slow convergence with
// ad-hoc exceptional shifts every kexsh iterations.
kexsh = 6
// See https://github.com/gonum/lapack/pull/151#discussion_r68162802
// and the surrounding discussion for an explanation where these
// constants come from.
// TODO(vladimir-ch): Similar constants for exceptional shifts
// are used also in dlahqr.go. The first constant is different
// there, it is equal to 3. Why? And does it matter?
wilk1 = 0.75
wilk2 = -0.4375
)
switch {
case ilo < 0 || max(0, n-1) < ilo:
panic(badIlo)
case ihi < min(ilo, n-1) || n <= ihi:
panic(badIhi)
case lwork < 1 && n <= ntiny && lwork != -1:
panic(badWork)
// TODO(vladimir-ch): Enable if and when we figure out what the minimum
// necessary lwork value is. Dlaqr04 says that the minimum is n which
// clashes with Dlaqr23's opinion about optimal work when nw <= 2
// (independent of n).
// case lwork < n && n > ntiny && lwork != -1:
// panic(badWork)
case len(work) < lwork:
panic(shortWork)
case recur < 0:
panic("lapack: recur is negative")
}
if wantz {
if iloz < 0 || ilo < iloz {
panic("lapack: invalid value of iloz")
}
if ihiz < ihi || n <= ihiz {
panic("lapack: invalid value of ihiz")
}
}
if lwork != -1 {
checkMatrix(n, n, h, ldh)
if wantz {
checkMatrix(n, n, z, ldz)
}
switch {
case ilo > 0 && h[ilo*ldh+ilo-1] != 0:
panic("lapack: block not isolated")
case ihi+1 < n && h[(ihi+1)*ldh+ihi] != 0:
panic("lapack: block not isolated")
case len(wr) != ihi+1:
panic("lapack: bad length of wr")
case len(wi) != ihi+1:
panic("lapack: bad length of wi")
}
}
// Quick return.
if n == 0 {
work[0] = 1
return 0
}
if n <= ntiny {
// Tiny matrices must use Dlahqr.
work[0] = 1
if lwork == -1 {
return 0
}
return impl.Dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz)
}
// Use small bulge multi-shift QR with aggressive early deflation on
// larger-than-tiny matrices.
var jbcmpz string
if wantt {
jbcmpz = "S"
} else {
jbcmpz = "E"
}
if wantz {
jbcmpz += "V"
} else {
jbcmpz += "N"
}
var fname string
if recur > 0 {
fname = "DLAQR0"
} else {
fname = "DLAQR4"
}
// nwr is the recommended deflation window size. n is greater than 11,
// so there is enough subdiagonal workspace for nwr >= 2 as required.
// (In fact, there is enough subdiagonal space for nwr >= 3.)
// TODO(vladimir-ch): If there is enough space for nwr >= 3, should we
// use it?
nwr := impl.Ilaenv(13, fname, jbcmpz, n, ilo, ihi, lwork)
nwr = max(2, nwr)
nwr = min(ihi-ilo+1, min((n-1)/3, nwr))
// nsr is the recommended number of simultaneous shifts. n is greater
// than 11, so there is enough subdiagonal workspace for nsr to be even
// and greater than or equal to two as required.
nsr := impl.Ilaenv(15, fname, jbcmpz, n, ilo, ihi, lwork)
nsr = min(nsr, min((n+6)/9, ihi-ilo))
nsr = max(2, nsr&^1)
// Workspace query call to Dlaqr23.
impl.Dlaqr23(wantt, wantz, n, ilo, ihi, nwr+1, nil, 0, iloz, ihiz, nil, 0,
nil, nil, nil, 0, n, nil, 0, n, nil, 0, work, -1, recur)
// Optimal workspace is max(Dlaqr5, Dlaqr23).
lwkopt := max(3*nsr/2, int(work[0]))
// Quick return in case of workspace query.
if lwork == -1 {
work[0] = float64(lwkopt)
return 0
}
// Dlahqr/Dlaqr04 crossover point.
nmin := impl.Ilaenv(12, fname, jbcmpz, n, ilo, ihi, lwork)
nmin = max(ntiny, nmin)
// Nibble determines when to skip a multi-shift QR sweep (Dlaqr5).
nibble := impl.Ilaenv(14, fname, jbcmpz, n, ilo, ihi, lwork)
nibble = max(0, nibble)
// Computation mode of far-from-diagonal orthogonal updates in Dlaqr5.
kacc22 := impl.Ilaenv(16, fname, jbcmpz, n, ilo, ihi, lwork)
kacc22 = max(0, min(kacc22, 2))
// nwmax is the largest possible deflation window for which there is
// sufficient workspace.
nwmax := min((n-1)/3, lwork/2)
nw := nwmax // Start with maximum deflation window size.
// nsmax is the largest number of simultaneous shifts for which there is
// sufficient workspace.
nsmax := min((n+6)/9, 2*lwork/3) &^ 1
ndfl := 1 // Number of iterations since last deflation.
ndec := 0 // Deflation window size decrement.
// Main loop.
var (
itmax = max(30, 2*kexsh) * max(10, (ihi-ilo+1))
it = 0
)
for kbot := ihi; kbot >= ilo; {
if it == itmax {
unconverged = kbot + 1
break
}
it++
// Locate active block.
ktop := ilo
for k := kbot; k >= ilo+1; k-- {
if h[k*ldh+k-1] == 0 {
ktop = k
break
}
}
// Select deflation window size nw.
//
// Typical Case:
// If possible and advisable, nibble the entire active block.
// If not, use size min(nwr,nwmax) or min(nwr+1,nwmax)
// depending upon which has the smaller corresponding
// subdiagonal entry (a heuristic).
//
// Exceptional Case:
// If there have been no deflations in kexnw or more
// iterations, then vary the deflation window size. At first,
// because larger windows are, in general, more powerful than
// smaller ones, rapidly increase the window to the maximum
// possible. Then, gradually reduce the window size.
nh := kbot - ktop + 1
nwupbd := min(nh, nwmax)
if ndfl < kexnw {
nw = min(nwupbd, nwr)
} else {
nw = min(nwupbd, 2*nw)
}
if nw < nwmax {
if nw >= nh-1 {
nw = nh
} else {
kwtop := kbot - nw + 1
if math.Abs(h[kwtop*ldh+kwtop-1]) > math.Abs(h[(kwtop-1)*ldh+kwtop-2]) {
nw++
}
}
}
if ndfl < kexnw {
ndec = -1
} else if ndec >= 0 || nw >= nwupbd {
ndec++
if nw-ndec < 2 {
ndec = 0
}
nw -= ndec
}
// Split workspace under the subdiagonal of H into:
// - an nw×nw work array V in the lower left-hand corner,
// - an nw×nhv horizontal work array along the bottom edge (nhv
// must be at least nw but more is better),
// - an nve×nw vertical work array along the left-hand-edge
// (nhv can be any positive integer but more is better).
kv := n - nw
kt := nw
kwv := nw + 1
nhv := n - kwv - kt
// Aggressive early deflation.
ls, ld := impl.Dlaqr23(wantt, wantz, n, ktop, kbot, nw,
h, ldh, iloz, ihiz, z, ldz, wr[:kbot+1], wi[:kbot+1],
h[kv*ldh:], ldh, nhv, h[kv*ldh+kt:], ldh, nhv, h[kwv*ldh:], ldh, work, lwork, recur)
// Adjust kbot accounting for new deflations.
kbot -= ld
// ks points to the shifts.
ks := kbot - ls + 1
// Skip an expensive QR sweep if there is a (partly heuristic)
// reason to expect that many eigenvalues will deflate without
// it. Here, the QR sweep is skipped if many eigenvalues have
// just been deflated or if the remaining active block is small.
if ld > 0 && (100*ld > nw*nibble || kbot-ktop+1 <= min(nmin, nwmax)) {
// ld is positive, note progress.
ndfl = 1
continue
}
// ns is the nominal number of simultaneous shifts. This may be
// lowered (slightly) if Dlaqr23 did not provide that many
// shifts.
ns := min(min(nsmax, nsr), max(2, kbot-ktop)) &^ 1
// If there have been no deflations in a multiple of kexsh
// iterations, then try exceptional shifts. Otherwise use shifts
// provided by Dlaqr23 above or from the eigenvalues of a
// trailing principal submatrix.
if ndfl%kexsh == 0 {
ks = kbot - ns + 1
for i := kbot; i > max(ks, ktop+1); i -= 2 {
ss := math.Abs(h[i*ldh+i-1]) + math.Abs(h[(i-1)*ldh+i-2])
aa := wilk1*ss + h[i*ldh+i]
_, _, _, _, wr[i-1], wi[i-1], wr[i], wi[i], _, _ =
impl.Dlanv2(aa, ss, wilk2*ss, aa)
}
if ks == ktop {
wr[ks+1] = h[(ks+1)*ldh+ks+1]
wi[ks+1] = 0
wr[ks] = wr[ks+1]
wi[ks] = wi[ks+1]
}
} else {
// If we got ns/2 or fewer shifts, use Dlahqr or recur
// into Dlaqr04 on a trailing principal submatrix to get
// more. Since ns <= nsmax <=(n+6)/9, there is enough
// space below the subdiagonal to fit an ns×ns scratch
// array.
if kbot-ks+1 <= ns/2 {
ks = kbot - ns + 1
kt = n - ns
impl.Dlacpy(blas.All, ns, ns, h[ks*ldh+ks:], ldh, h[kt*ldh:], ldh)
if ns > nmin && recur > 0 {
ks += impl.Dlaqr04(false, false, ns, 1, ns-1, h[kt*ldh:], ldh,
wr[ks:ks+ns], wi[ks:ks+ns], 0, 0, nil, 0, work, lwork, recur-1)
} else {
ks += impl.Dlahqr(false, false, ns, 0, ns-1, h[kt*ldh:], ldh,
wr[ks:ks+ns], wi[ks:ks+ns], 0, 0, nil, 0)
}
// In case of a rare QR failure use eigenvalues
// of the trailing 2×2 principal submatrix.
if ks >= kbot {
aa := h[(kbot-1)*ldh+kbot-1]
bb := h[(kbot-1)*ldh+kbot]
cc := h[kbot*ldh+kbot-1]
dd := h[kbot*ldh+kbot]
_, _, _, _, wr[kbot-1], wi[kbot-1], wr[kbot], wi[kbot], _, _ =
impl.Dlanv2(aa, bb, cc, dd)
ks = kbot - 1
}
}
if kbot-ks+1 > ns {
// Sorting the shifts helps a little. Bubble
// sort keeps complex conjugate pairs together.
sorted := false
for k := kbot; k > ks; k-- {
if sorted {
break
}
sorted = true
for i := ks; i < k; i++ {
if math.Abs(wr[i])+math.Abs(wi[i]) >= math.Abs(wr[i+1])+math.Abs(wi[i+1]) {
continue
}
sorted = false
wr[i], wr[i+1] = wr[i+1], wr[i]
wi[i], wi[i+1] = wi[i+1], wi[i]
}
}
}
// Shuffle shifts into pairs of real shifts and pairs of
// complex conjugate shifts using the fact that complex
// conjugate shifts are already adjacent to one another.
// TODO(vladimir-ch): The shuffling here could probably
// be removed but I'm not sure right now and it's safer
// to leave it.
for i := kbot; i > ks+1; i -= 2 {
if wi[i] == -wi[i-1] {
continue
}
wr[i], wr[i-1], wr[i-2] = wr[i-1], wr[i-2], wr[i]
wi[i], wi[i-1], wi[i-2] = wi[i-1], wi[i-2], wi[i]
}
}
// If there are only two shifts and both are real, then use only one.
if kbot-ks+1 == 2 && wi[kbot] == 0 {
if math.Abs(wr[kbot]-h[kbot*ldh+kbot]) < math.Abs(wr[kbot-1]-h[kbot*ldh+kbot]) {
wr[kbot-1] = wr[kbot]
} else {
wr[kbot] = wr[kbot-1]
}
}
// Use up to ns of the the smallest magnitude shifts. If there
// aren't ns shifts available, then use them all, possibly
// dropping one to make the number of shifts even.
ns = min(ns, kbot-ks+1) &^ 1
ks = kbot - ns + 1
// Split workspace under the subdiagonal into:
// - a kdu×kdu work array U in the lower left-hand-corner,
// - a kdu×nhv horizontal work array WH along the bottom edge
// (nhv must be at least kdu but more is better),
// - an nhv×kdu vertical work array WV along the left-hand-edge
// (nhv must be at least kdu but more is better).
kdu := 3*ns - 3
ku := n - kdu
kwh := kdu
kwv = kdu + 3
nhv = n - kwv - kdu
// Small-bulge multi-shift QR sweep.
impl.Dlaqr5(wantt, wantz, kacc22, n, ktop, kbot, ns,
wr[ks:ks+ns], wi[ks:ks+ns], h, ldh, iloz, ihiz, z, ldz,
work, 3, h[ku*ldh:], ldh, nhv, h[kwv*ldh:], ldh, nhv, h[ku*ldh+kwh:], ldh)
// Note progress (or the lack of it).
if ld > 0 {
ndfl = 1
} else {
ndfl++
}
}
work[0] = float64(lwkopt)
return unconverged
}