blob: fb1873f768a2249cba682ad836f6336cddca514f [file] [log] [blame]
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlaln2 solves a linear equation or a system of 2 linear equations of the form
// (ca A - w D) X = scale B, if trans == false,
// (ca A^T - w D) X = scale B, if trans == true,
// where A is a na×na real matrix, ca is a real scalar, D is a na×na diagonal
// real matrix, w is a scalar, real if nw == 1, complex if nw == 2, and X and B
// are na×1 matrices, real if w is real, complex if w is complex.
//
// If w is complex, X and B are represented as na×2 matrices, the first column
// of each being the real part and the second being the imaginary part.
//
// na and nw must be 1 or 2, otherwise Dlaln2 will panic.
//
// d1 and d2 are the diagonal elements of D. d2 is not used if na == 1.
//
// wr and wi represent the real and imaginary part, respectively, of the scalar
// w. wi is not used if nw == 1.
//
// smin is the desired lower bound on the singular values of A. This should be
// a safe distance away from underflow or overflow, say, between
// (underflow/machine precision) and (overflow*machine precision).
//
// If both singular values of (ca A - w D) are less than smin, smin*identity
// will be used instead of (ca A - w D). If only one singular value is less than
// smin, one element of (ca A - w D) will be perturbed enough to make the
// smallest singular value roughly smin. If both singular values are at least
// smin, (ca A - w D) will not be perturbed. In any case, the perturbation will
// be at most some small multiple of max(smin, ulp*norm(ca A - w D)). The
// singular values are computed by infinity-norm approximations, and thus will
// only be correct to a factor of 2 or so.
//
// All input quantities are assumed to be smaller than overflow by a reasonable
// factor.
//
// scale is a scaling factor less than or equal to 1 which is chosen so that X
// can be computed without overflow. X is further scaled if necessary to assure
// that norm(ca A - w D)*norm(X) is less than overflow.
//
// xnorm contains the infinity-norm of X when X is regarded as a na×nw real
// matrix.
//
// ok will be false if (ca A - w D) had to be perturbed to make its smallest
// singular value greater than smin, otherwise ok will be true.
//
// Dlaln2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlaln2(trans bool, na, nw int, smin, ca float64, a []float64, lda int, d1, d2 float64, b []float64, ldb int, wr, wi float64, x []float64, ldx int) (scale, xnorm float64, ok bool) {
// TODO(vladimir-ch): Consider splitting this function into two, one
// handling the real case (nw == 1) and the other handling the complex
// case (nw == 2). Given that Go has complex types, their signatures
// would be simpler and more natural, and the implementation not as
// convoluted.
if na != 1 && na != 2 {
panic("lapack: invalid value of na")
}
if nw != 1 && nw != 2 {
panic("lapack: invalid value of nw")
}
checkMatrix(na, na, a, lda)
checkMatrix(na, nw, b, ldb)
checkMatrix(na, nw, x, ldx)
smlnum := 2 * dlamchS
bignum := 1 / smlnum
smini := math.Max(smin, smlnum)
ok = true
scale = 1
if na == 1 {
// 1×1 (i.e., scalar) system C X = B.
if nw == 1 {
// Real 1×1 system.
// C = ca A - w D.
csr := ca*a[0] - wr*d1
cnorm := math.Abs(csr)
// If |C| < smini, use C = smini.
if cnorm < smini {
csr = smini
cnorm = smini
ok = false
}
// Check scaling for X = B / C.
bnorm := math.Abs(b[0])
if cnorm < 1 && bnorm > math.Max(1, bignum*cnorm) {
scale = 1 / bnorm
}
// Compute X.
x[0] = b[0] * scale / csr
xnorm = math.Abs(x[0])
return scale, xnorm, ok
}
// Complex 1×1 system (w is complex).
// C = ca A - w D.
csr := ca*a[0] - wr*d1
csi := -wi * d1
cnorm := math.Abs(csr) + math.Abs(csi)
// If |C| < smini, use C = smini.
if cnorm < smini {
csr = smini
csi = 0
cnorm = smini
ok = false
}
// Check scaling for X = B / C.
bnorm := math.Abs(b[0]) + math.Abs(b[1])
if cnorm < 1 && bnorm > math.Max(1, bignum*cnorm) {
scale = 1 / bnorm
}
// Compute X.
cx := complex(scale*b[0], scale*b[1]) / complex(csr, csi)
x[0], x[1] = real(cx), imag(cx)
xnorm = math.Abs(x[0]) + math.Abs(x[1])
return scale, xnorm, ok
}
// 2×2 system.
// Compute the real part of
// C = ca A - w D
// or
// C = ca A^T - w D.
crv := [4]float64{
ca*a[0] - wr*d1,
ca * a[1],
ca * a[lda],
ca*a[lda+1] - wr*d2,
}
if trans {
crv[1] = ca * a[lda]
crv[2] = ca * a[1]
}
pivot := [4][4]int{
{0, 1, 2, 3},
{1, 0, 3, 2},
{2, 3, 0, 1},
{3, 2, 1, 0},
}
if nw == 1 {
// Real 2×2 system (w is real).
// Find the largest element in C.
var cmax float64
var icmax int
for j, v := range crv {
v = math.Abs(v)
if v > cmax {
cmax = v
icmax = j
}
}
// If norm(C) < smini, use smini*identity.
if cmax < smini {
bnorm := math.Max(math.Abs(b[0]), math.Abs(b[ldb]))
if smini < 1 && bnorm > math.Max(1, bignum*smini) {
scale = 1 / bnorm
}
temp := scale / smini
x[0] = temp * b[0]
x[ldx] = temp * b[ldb]
xnorm = temp * bnorm
ok = false
return scale, xnorm, ok
}
// Gaussian elimination with complete pivoting.
// Form upper triangular matrix
// [ur11 ur12]
// [ 0 ur22]
ur11 := crv[icmax]
ur12 := crv[pivot[icmax][1]]
cr21 := crv[pivot[icmax][2]]
cr22 := crv[pivot[icmax][3]]
ur11r := 1 / ur11
lr21 := ur11r * cr21
ur22 := cr22 - ur12*lr21
// If smaller pivot < smini, use smini.
if math.Abs(ur22) < smini {
ur22 = smini
ok = false
}
var br1, br2 float64
if icmax > 1 {
// If the pivot lies in the second row, swap the rows.
br1 = b[ldb]
br2 = b[0]
} else {
br1 = b[0]
br2 = b[ldb]
}
br2 -= lr21 * br1 // Apply the Gaussian elimination step to the right-hand side.
bbnd := math.Max(math.Abs(ur22*ur11r*br1), math.Abs(br2))
if bbnd > 1 && math.Abs(ur22) < 1 && bbnd >= bignum*math.Abs(ur22) {
scale = 1 / bbnd
}
// Solve the linear system ur*xr=br.
xr2 := br2 * scale / ur22
xr1 := scale*br1*ur11r - ur11r*ur12*xr2
if icmax&0x1 != 0 {
// If the pivot lies in the second column, swap the components of the solution.
x[0] = xr2
x[ldx] = xr1
} else {
x[0] = xr1
x[ldx] = xr2
}
xnorm = math.Max(math.Abs(xr1), math.Abs(xr2))
// Further scaling if norm(A)*norm(X) > overflow.
if xnorm > 1 && cmax > 1 && xnorm > bignum/cmax {
temp := cmax / bignum
x[0] *= temp
x[ldx] *= temp
xnorm *= temp
scale *= temp
}
return scale, xnorm, ok
}
// Complex 2×2 system (w is complex).
// Find the largest element in C.
civ := [4]float64{
-wi * d1,
0,
0,
-wi * d2,
}
var cmax float64
var icmax int
for j, v := range crv {
v := math.Abs(v)
if v+math.Abs(civ[j]) > cmax {
cmax = v + math.Abs(civ[j])
icmax = j
}
}
// If norm(C) < smini, use smini*identity.
if cmax < smini {
br1 := math.Abs(b[0]) + math.Abs(b[1])
br2 := math.Abs(b[ldb]) + math.Abs(b[ldb+1])
bnorm := math.Max(br1, br2)
if smini < 1 && bnorm > 1 && bnorm > bignum*smini {
scale = 1 / bnorm
}
temp := scale / smini
x[0] = temp * b[0]
x[1] = temp * b[1]
x[ldb] = temp * b[ldb]
x[ldb+1] = temp * b[ldb+1]
xnorm = temp * bnorm
ok = false
return scale, xnorm, ok
}
// Gaussian elimination with complete pivoting.
ur11 := crv[icmax]
ui11 := civ[icmax]
ur12 := crv[pivot[icmax][1]]
ui12 := civ[pivot[icmax][1]]
cr21 := crv[pivot[icmax][2]]
ci21 := civ[pivot[icmax][2]]
cr22 := crv[pivot[icmax][3]]
ci22 := civ[pivot[icmax][3]]
var (
ur11r, ui11r float64
lr21, li21 float64
ur12s, ui12s float64
ur22, ui22 float64
)
if icmax == 0 || icmax == 3 {
// Off-diagonals of pivoted C are real.
if math.Abs(ur11) > math.Abs(ui11) {
temp := ui11 / ur11
ur11r = 1 / (ur11 * (1 + temp*temp))
ui11r = -temp * ur11r
} else {
temp := ur11 / ui11
ui11r = -1 / (ui11 * (1 + temp*temp))
ur11r = -temp * ui11r
}
lr21 = cr21 * ur11r
li21 = cr21 * ui11r
ur12s = ur12 * ur11r
ui12s = ur12 * ui11r
ur22 = cr22 - ur12*lr21
ui22 = ci22 - ur12*li21
} else {
// Diagonals of pivoted C are real.
ur11r = 1 / ur11
// ui11r is already 0.
lr21 = cr21 * ur11r
li21 = ci21 * ur11r
ur12s = ur12 * ur11r
ui12s = ui12 * ur11r
ur22 = cr22 - ur12*lr21 + ui12*li21
ui22 = -ur12*li21 - ui12*lr21
}
u22abs := math.Abs(ur22) + math.Abs(ui22)
// If smaller pivot < smini, use smini.
if u22abs < smini {
ur22 = smini
ui22 = 0
ok = false
}
var br1, bi1 float64
var br2, bi2 float64
if icmax > 1 {
// If the pivot lies in the second row, swap the rows.
br1 = b[ldb]
bi1 = b[ldb+1]
br2 = b[0]
bi2 = b[1]
} else {
br1 = b[0]
bi1 = b[1]
br2 = b[ldb]
bi2 = b[ldb+1]
}
br2 += -lr21*br1 + li21*bi1
bi2 += -li21*br1 - lr21*bi1
bbnd1 := u22abs * (math.Abs(ur11r) + math.Abs(ui11r)) * (math.Abs(br1) + math.Abs(bi1))
bbnd2 := math.Abs(br2) + math.Abs(bi2)
bbnd := math.Max(bbnd1, bbnd2)
if bbnd > 1 && u22abs < 1 && bbnd >= bignum*u22abs {
scale = 1 / bbnd
br1 *= scale
bi1 *= scale
br2 *= scale
bi2 *= scale
}
cx2 := complex(br2, bi2) / complex(ur22, ui22)
xr2, xi2 := real(cx2), imag(cx2)
xr1 := ur11r*br1 - ui11r*bi1 - ur12s*xr2 + ui12s*xi2
xi1 := ui11r*br1 + ur11r*bi1 - ui12s*xr2 - ur12s*xi2
if icmax&0x1 != 0 {
// If the pivot lies in the second column, swap the components of the solution.
x[0] = xr2
x[1] = xi2
x[ldx] = xr1
x[ldx+1] = xi1
} else {
x[0] = xr1
x[1] = xi1
x[ldx] = xr2
x[ldx+1] = xi2
}
xnorm = math.Max(math.Abs(xr1)+math.Abs(xi1), math.Abs(xr2)+math.Abs(xi2))
// Further scaling if norm(A)*norm(X) > overflow.
if xnorm > 1 && cmax > 1 && xnorm > bignum/cmax {
temp := cmax / bignum
x[0] *= temp
x[1] *= temp
x[ldx] *= temp
x[ldx+1] *= temp
xnorm *= temp
scale *= temp
}
return scale, xnorm, ok
}