blob: daf8f0d09af050d7bdcdbceeee05b7850219925f [file] [log] [blame]
// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dgerqf computes an RQ factorization of the m×n matrix A,
// A = R * Q.
// On exit, if m <= n, the upper triangle of the subarray
// A[0:m, n-m:n] contains the m×m upper triangular matrix R.
// If m >= n, the elements on and above the (m-n)-th subdiagonal
// contain the m×n upper trapezoidal matrix R.
// The remaining elements, with tau, represent the
// orthogonal matrix Q as a product of min(m,n) elementary
// reflectors.
//
// The matrix Q is represented as a product of elementary reflectors
// Q = H_0 H_1 . . . H_{min(m,n)-1}.
// Each H(i) has the form
// H_i = I - tau_i * v * v^T
// where v is a vector with v[0:n-k+i-1] stored in A[m-k+i, 0:n-k+i-1],
// v[n-k+i:n] = 0 and v[n-k+i] = 1.
//
// tau must have length min(m,n), work must have length max(1, lwork),
// and lwork must be -1 or at least max(1, m), otherwise Dgerqf will panic.
// On exit, work[0] will contain the optimal length for work.
//
// Dgerqf is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgerqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
checkMatrix(m, n, a, lda)
if len(work) < max(1, lwork) {
panic(shortWork)
}
if lwork != -1 && lwork < max(1, m) {
panic(badWork)
}
k := min(m, n)
if len(tau) != k {
panic(badTau)
}
var nb, lwkopt int
if k == 0 {
lwkopt = 1
} else {
nb = impl.Ilaenv(1, "DGERQF", " ", m, n, -1, -1)
lwkopt = m * nb
}
work[0] = float64(lwkopt)
if lwork == -1 {
return
}
// Return quickly if possible.
if k == 0 {
return
}
nbmin := 2
nx := 1
iws := m
var ldwork int
if 1 < nb && nb < k {
// Determine when to cross over from blocked to unblocked code.
nx = max(0, impl.Ilaenv(3, "DGERQF", " ", m, n, -1, -1))
if nx < k {
// Determine whether workspace is large enough for blocked code.
iws = m * nb
if lwork < iws {
// Not enough workspace to use optimal nb. Reduce
// nb and determine the minimum value of nb.
nb = lwork / m
nbmin = max(2, impl.Ilaenv(2, "DGERQF", " ", m, n, -1, -1))
}
ldwork = nb
}
}
var mu, nu int
if nbmin <= nb && nb < k && nx < k {
// Use blocked code initially.
// The last kk rows are handled by the block method.
ki := ((k - nx - 1) / nb) * nb
kk := min(k, ki+nb)
var i int
for i = k - kk + ki; i >= k-kk; i -= nb {
ib := min(k-i, nb)
// Compute the RQ factorization of the current block
// A[m-k+i:m-k+i+ib-1, 0:n-k+i+ib-1].
impl.Dgerq2(ib, n-k+i+ib, a[(m-k+i)*lda:], lda, tau[i:], work)
if m-k+i > 0 {
// Form the triangular factor of the block reflector
// H = H_{i+ib-1} . . . H_{i+1} H_i.
impl.Dlarft(lapack.Backward, lapack.RowWise,
n-k+i+ib, ib, a[(m-k+i)*lda:], lda, tau[i:],
work, ldwork)
// Apply H to A[0:m-k+i-1, 0:n-k+i+ib-1] from the right.
impl.Dlarfb(blas.Right, blas.NoTrans, lapack.Backward, lapack.RowWise,
m-k+i, n-k+i+ib, ib, a[(m-k+i)*lda:], lda,
work, ldwork,
a, lda,
work[ib*ldwork:], ldwork)
}
}
mu = m - k + i + nb
nu = n - k + i + nb
} else {
mu = m
nu = n
}
// Use unblocked code to factor the last or only block.
if mu > 0 && nu > 0 {
impl.Dgerq2(mu, nu, a, lda, tau, work)
}
work[0] = float64(iws)
}