| // Copyright ©2018 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package distuv |
| |
| import ( |
| "math" |
| |
| "golang.org/x/exp/rand" |
| |
| "gonum.org/v1/gonum/mathext" |
| ) |
| |
| // InverseGamma implements the inverse gamma distribution, a two-parameter |
| // continuous distribution with support over the positive real numbers. The |
| // inverse gamma distribution is the same as the distribution of the reciprocal |
| // of a gamma distributed random variable. |
| // |
| // The inverse gamma distribution has density function |
| // |
| // β^α / Γ(α) x^(-α-1)e^(-β/x) |
| // |
| // For more information, see https://en.wikipedia.org/wiki/Inverse-gamma_distribution |
| type InverseGamma struct { |
| // Alpha is the shape parameter of the distribution. Alpha must be greater than 0. |
| Alpha float64 |
| // Beta is the scale parameter of the distribution. Beta must be greater than 0. |
| Beta float64 |
| |
| Src rand.Source |
| } |
| |
| // CDF computes the value of the cumulative distribution function at x. |
| func (g InverseGamma) CDF(x float64) float64 { |
| if x < 0 { |
| return 0 |
| } |
| // TODO(btracey): Replace this with a direct call to the upper regularized |
| // gamma function if mathext gets it. |
| //return 1 - mathext.GammaInc(g.Alpha, g.Beta/x) |
| return mathext.GammaIncRegComp(g.Alpha, g.Beta/x) |
| } |
| |
| // ExKurtosis returns the excess kurtosis of the distribution. |
| func (g InverseGamma) ExKurtosis() float64 { |
| if g.Alpha <= 4 { |
| return math.Inf(1) |
| } |
| return (30*g.Alpha - 66) / (g.Alpha - 3) / (g.Alpha - 4) |
| } |
| |
| // LogProb computes the natural logarithm of the value of the probability |
| // density function at x. |
| func (g InverseGamma) LogProb(x float64) float64 { |
| if x <= 0 { |
| return math.Inf(-1) |
| } |
| a := g.Alpha |
| b := g.Beta |
| lg, _ := math.Lgamma(a) |
| return a*math.Log(b) - lg + (-a-1)*math.Log(x) - b/x |
| } |
| |
| // Mean returns the mean of the probability distribution. |
| func (g InverseGamma) Mean() float64 { |
| if g.Alpha <= 1 { |
| return math.Inf(1) |
| } |
| return g.Beta / (g.Alpha - 1) |
| } |
| |
| // Mode returns the mode of the distribution. |
| func (g InverseGamma) Mode() float64 { |
| return g.Beta / (g.Alpha + 1) |
| } |
| |
| // NumParameters returns the number of parameters in the distribution. |
| func (InverseGamma) NumParameters() int { |
| return 2 |
| } |
| |
| // Prob computes the value of the probability density function at x. |
| func (g InverseGamma) Prob(x float64) float64 { |
| return math.Exp(g.LogProb(x)) |
| } |
| |
| // Quantile returns the inverse of the cumulative distribution function. |
| func (g InverseGamma) Quantile(p float64) float64 { |
| if p < 0 || 1 < p { |
| panic(badPercentile) |
| } |
| return (1 / (mathext.GammaIncRegCompInv(g.Alpha, p))) * g.Beta |
| } |
| |
| // Rand returns a random sample drawn from the distribution. |
| // |
| // Rand panics if either alpha or beta is <= 0. |
| func (g InverseGamma) Rand() float64 { |
| // TODO(btracey): See if there is a more direct way to sample. |
| return 1 / Gamma(g).Rand() |
| } |
| |
| // Survival returns the survival function (complementary CDF) at x. |
| func (g InverseGamma) Survival(x float64) float64 { |
| if x < 0 { |
| return 1 |
| } |
| return mathext.GammaIncReg(g.Alpha, g.Beta/x) |
| } |
| |
| // StdDev returns the standard deviation of the probability distribution. |
| func (g InverseGamma) StdDev() float64 { |
| return math.Sqrt(g.Variance()) |
| } |
| |
| // Variance returns the variance of the probability distribution. |
| func (g InverseGamma) Variance() float64 { |
| if g.Alpha <= 2 { |
| return math.Inf(1) |
| } |
| v := g.Beta / (g.Alpha - 1) |
| return v * v / (g.Alpha - 2) |
| } |