blob: 4a308ae46eb6fabc4d79e5cb0bd4ab5ca0d6a260 [file] [log] [blame]
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
)
type Dorgtrer interface {
Dorgtr(uplo blas.Uplo, n int, a []float64, lda int, tau, work []float64, lwork int)
Dsytrder
}
func DorgtrTest(t *testing.T, impl Dorgtrer) {
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
for _, test := range []struct {
n, lda int
}{
{1, 0},
{2, 0},
{3, 0},
{6, 0},
{33, 0},
{100, 0},
{1, 3},
{2, 5},
{3, 7},
{6, 10},
{33, 50},
{100, 120},
} {
n := test.n
lda := test.lda
if lda == 0 {
lda = n
}
// Allocate n×n matrix A and fill it with random numbers.
a := make([]float64, n*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Allocate slices for the main diagonal and the
// first off-diagonal of the tri-diagonal matrix.
d := make([]float64, n)
e := make([]float64, n-1)
// Allocate slice for elementary reflector scales.
tau := make([]float64, n-1)
// Compute optimum workspace size for Dorgtr call.
work := make([]float64, 1)
impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, -1)
work = make([]float64, int(work[0]))
// Compute elementary reflectors that reduce the
// symmetric matrix defined by the uplo triangle
// of A to a tridiagonal matrix.
impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, len(work))
// Compute workspace size for Dorgtr call.
var lwork int
switch wl {
case minimumWork:
lwork = max(1, n-1)
case mediumWork:
work := make([]float64, 1)
impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
lwork = (int(work[0]) + n - 1) / 2
lwork = max(1, lwork)
case optimumWork:
work := make([]float64, 1)
impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
lwork = int(work[0])
}
work = nanSlice(lwork)
// Generate an orthogonal matrix Q that reduces
// the uplo triangle of A to a tridiagonal matrix.
impl.Dorgtr(uplo, n, a, lda, tau, work, len(work))
q := blas64.General{
Rows: n,
Cols: n,
Stride: lda,
Data: a,
}
name := fmt.Sprintf("uplo=%c,n=%v,lda=%v,work=%v", uplo, n, lda, wl)
if resid := residualOrthogonal(q, false); resid > tol*float64(n) {
t.Errorf("Case %v: Q is not orthogonal; resid=%v, want<=%v", name, resid, tol*float64(n))
}
// Create the tridiagonal matrix explicitly in
// dense representation from the diagonals d and e.
tri := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
for i := 0; i < n; i++ {
tri.Data[i*tri.Stride+i] = d[i]
if i != n-1 {
tri.Data[i*tri.Stride+i+1] = e[i]
tri.Data[(i+1)*tri.Stride+i] = e[i]
}
}
// Create the symmetric matrix A from the uplo
// triangle of aCopy, storing it explicitly in dense form.
aMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
v := aCopy[i*lda+j]
aMat.Data[i*aMat.Stride+j] = v
aMat.Data[j*aMat.Stride+i] = v
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
v := aCopy[i*lda+j]
aMat.Data[i*aMat.Stride+j] = v
aMat.Data[j*aMat.Stride+i] = v
}
}
}
// Compute Qᵀ * A * Q and store the result in ans.
tmp := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aMat, q, 0, tmp)
ans := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, tmp, 0, ans)
// Compare the tridiagonal matrix tri from
// Dorgtr with the explicit computation ans.
if !floats.EqualApprox(ans.Data, tri.Data, tol) {
t.Errorf("Case %v: Recombination mismatch", name)
}
}
}
}
}