blob: 3d8a96786d0cbba8d20ac5779ab266c19325af13 [file] [log] [blame] [edit]
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dualquat_test
import (
"fmt"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/num/dualquat"
"gonum.org/v1/gonum/num/quat"
)
// point is a 3-dimensional point/vector.
type point struct {
x, y, z float64
}
// raise raises the dimensionality of a point to a quaternion.
func raise(p point) quat.Number {
return quat.Number{Imag: p.x, Jmag: p.y, Kmag: p.z}
}
// raiseDual raises the dimensionality of a point to a dual quaternion.
func raiseDual(p point) dualquat.Number {
return dualquat.Number{
Real: quat.Number{Real: 1},
Dual: raise(p),
}
}
// transform performs the quaternion rotation of p by the given quaternion
// and scaling by the scale factor. The rotations are normalized to unit
// vectors.
func transform(p point, by ...dualquat.Number) point {
if len(by) == 0 {
return p
}
// Ensure the modulus of by is correctly scaled.
for i := range by {
if len := quat.Abs(by[i].Real); len != 1 {
by[i].Real = quat.Scale(1/len, by[i].Real)
}
}
// Perform the transformations.
q := by[0]
for _, o := range by[1:] {
q = dualquat.Mul(o, q)
}
pp := dualquat.Mul(dualquat.Mul(q, raiseDual(p)), dualquat.ConjDual(dualquat.ConjQuat(q)))
// Extract the point.
return point{x: pp.Dual.Imag, y: pp.Dual.Jmag, z: pp.Dual.Kmag}
}
func Example() {
// Translate a 1×1×1 cube [3, 4, 5] and rotate it 120° around the
// diagonal vector [1, 1, 1].
fmt.Println("cube:")
// Construct a displacement.
displace := dualquat.Number{
Real: quat.Number{Real: 1},
Dual: quat.Scale(0.5, raise(point{3, 4, 5})),
}
// Construct a rotations.
alpha := 2 * math.Pi / 3
axis := raise(point{1, 1, 1})
rotate := dualquat.Number{Real: axis}
rotate.Real = quat.Scale(math.Sin(alpha/2)/quat.Abs(rotate.Real), rotate.Real)
rotate.Real.Real += math.Cos(alpha / 2)
for i, p := range []point{
{x: 0, y: 0, z: 0},
{x: 0, y: 0, z: 1},
{x: 0, y: 1, z: 0},
{x: 0, y: 1, z: 1},
{x: 1, y: 0, z: 0},
{x: 1, y: 0, z: 1},
{x: 1, y: 1, z: 0},
{x: 1, y: 1, z: 1},
} {
pp := transform(p,
displace, rotate,
)
// Clean up floating point error for clarity.
pp.x = floats.Round(pp.x, 2)
pp.y = floats.Round(pp.y, 2)
pp.z = floats.Round(pp.z, 2)
fmt.Printf(" %d %+v -> %+v\n", i, p, pp)
}
// Rotate a line segment from [2, 1, 1] to [2, 1, 2] 120° around
// the diagonal vector [1, 1, 1] at its lower end.
fmt.Println("\nline segment:")
// Construct an displacement to the origin from the lower end...
origin := dualquat.Number{
Real: quat.Number{Real: 1},
Dual: quat.Scale(0.5, raise(point{-2, -1, -1})),
}
// ... and back from the origin to the lower end.
replace := dualquat.Number{
Real: quat.Number{Real: 1},
Dual: quat.Scale(-1, origin.Dual),
}
for i, p := range []point{
{x: 2, y: 1, z: 1},
{x: 2, y: 1, z: 2},
} {
pp := transform(p,
origin, // Displace to origin.
rotate, // Rotate around axis.
replace, // Displace back to original location.
)
// Clean up floating point error for clarity.
pp.x = floats.Round(pp.x, 2)
pp.y = floats.Round(pp.y, 2)
pp.z = floats.Round(pp.z, 2)
fmt.Printf(" %d %+v -> %+v\n", i, p, pp)
}
// Output:
//
// cube:
// 0 {x:0 y:0 z:0} -> {x:5 y:3 z:4}
// 1 {x:0 y:0 z:1} -> {x:6 y:3 z:4}
// 2 {x:0 y:1 z:0} -> {x:5 y:3 z:5}
// 3 {x:0 y:1 z:1} -> {x:6 y:3 z:5}
// 4 {x:1 y:0 z:0} -> {x:5 y:4 z:4}
// 5 {x:1 y:0 z:1} -> {x:6 y:4 z:4}
// 6 {x:1 y:1 z:0} -> {x:5 y:4 z:5}
// 7 {x:1 y:1 z:1} -> {x:6 y:4 z:5}
//
// line segment:
// 0 {x:2 y:1 z:1} -> {x:2 y:1 z:1}
// 1 {x:2 y:1 z:2} -> {x:3 y:1 z:1}
}