| // Derived from SciPy's special/c_misc/gammaincinv.c |
| // https://github.com/scipy/scipy/blob/master/scipy/special/c_misc/gammaincinv.c |
| |
| // Copyright ©2017 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package mathext |
| |
| import ( |
| "math" |
| |
| "gonum.org/v1/gonum/mathext/internal/cephes" |
| ) |
| |
| const ( |
| allowedATol = 1e-306 |
| allowedRTol = 1e-6 |
| ) |
| |
| func gammaInc(x float64, params []float64) float64 { |
| return cephes.Igam(params[0], x) - params[1] |
| } |
| |
| // gammaIncInv is the inverse of the incomplete Gamma integral. That is, it |
| // returns x such that: |
| // Igam(a, x) = y |
| // The input argument a must be positive and y must be between 0 and 1 |
| // inclusive or gammaIncInv will panic. gammaIncInv should return a |
| // positive number, but can return NaN if there is a failure to converge. |
| func gammaIncInv(a, y float64) float64 { |
| // For y not small, we just use |
| // IgamI(a, 1-y) |
| // (inverse of the complemented incomplete Gamma integral). For y small, |
| // however, 1-y is about 1, and we lose digits. |
| if a <= 0 || y <= 0 || y >= 0.25 { |
| return cephes.IgamI(a, 1-y) |
| } |
| |
| lo := 0.0 |
| flo := -y |
| hi := cephes.IgamI(a, 0.75) |
| fhi := 0.25 - y |
| |
| params := []float64{a, y} |
| |
| // Also, after we generate a small interval by bisection above, false |
| // position will do a large step from an interval of width ~1e-4 to ~1e-14 |
| // in one step (a=10, x=0.05, but similar for other values). |
| result, bestX, _, errEst := falsePosition(lo, hi, flo, fhi, 2*machEp, 2*machEp, 1e-2*a, gammaInc, params) |
| if result == fSolveMaxIterations && errEst > allowedATol+allowedRTol*math.Abs(bestX) { |
| bestX = math.NaN() |
| } |
| |
| return bestX |
| } |