blob: 6130bc186ea501676c1184ecd6cf17632f82325f [file] [log] [blame] [edit]
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f32"
)
var _ blas.Float32Level2 = Implementation{}
// Sgemv computes
// y = alpha * A * x + beta * y if tA = blas.NoTrans
// y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgemv(tA blas.Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if lda < max(1, n) {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
// Set up indexes
lenX := m
lenY := n
if tA == blas.NoTrans {
lenX = n
lenY = m
}
if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
panic(badY)
}
if lda*(m-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
// Quick return if possible
if m == 0 || n == 0 || (alpha == 0 && beta == 1) {
return
}
var kx, ky int
if incX > 0 {
kx = 0
} else {
kx = -(lenX - 1) * incX
}
if incY > 0 {
ky = 0
} else {
ky = -(lenY - 1) * incY
}
// First form y = beta * y
if incY > 0 {
Implementation{}.Sscal(lenY, beta, y, incY)
} else {
Implementation{}.Sscal(lenY, beta, y, -incY)
}
if alpha == 0 {
return
}
// Form y = alpha * A * x + y
if tA == blas.NoTrans {
if incX == 1 && incY == 1 {
for i := 0; i < m; i++ {
y[i] += alpha * f32.DotUnitary(a[lda*i:lda*i+n], x)
}
return
}
iy := ky
for i := 0; i < m; i++ {
y[iy] += alpha * f32.DotInc(x, a[lda*i:lda*i+n], uintptr(n), uintptr(incX), 1, uintptr(kx), 0)
iy += incY
}
return
}
// Cases where a is transposed.
if incX == 1 && incY == 1 {
for i := 0; i < m; i++ {
tmp := alpha * x[i]
if tmp != 0 {
f32.AxpyUnitaryTo(y, tmp, a[lda*i:lda*i+n], y)
}
}
return
}
ix := kx
for i := 0; i < m; i++ {
tmp := alpha * x[ix]
if tmp != 0 {
f32.AxpyInc(tmp, a[lda*i:lda*i+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky))
}
ix += incX
}
}
// Sger performs the rank-one operation
// A += alpha * x * y^T
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int) {
// Check inputs
if m < 0 {
panic("m < 0")
}
if n < 0 {
panic(negativeN)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if (incX > 0 && (m-1)*incX >= len(x)) || (incX < 0 && (1-m)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(badY)
}
if lda*(m-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
if lda < max(1, n) {
panic(badLdA)
}
// Quick return if possible
if m == 0 || n == 0 || alpha == 0 {
return
}
f32.Ger(uintptr(m), uintptr(n),
alpha,
x, uintptr(incX),
y, uintptr(incY),
a, uintptr(lda))
}
// Sgbmv computes
// y = alpha * A * x + beta * y if tA == blas.NoTrans
// y = alpha * A^T * x + beta * y if tA == blas.Trans or blas.ConjTrans
// where a is an m×n band matrix kL subdiagonals and kU super-diagonals, and
// m and n refer to the size of the full dense matrix it represents.
// x and y are vectors, and alpha and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if kL < 0 {
panic(kLLT0)
}
if kL < 0 {
panic(kULT0)
}
if lda < kL+kU+1 {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
// Set up indexes
lenX := m
lenY := n
if tA == blas.NoTrans {
lenX = n
lenY = m
}
if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
panic(badY)
}
if lda*(min(m, n+kL)-1)+kL+kU+1 > len(a) || lda < kL+kU+1 {
panic(badLdA)
}
// Quick return if possible
if m == 0 || n == 0 || (alpha == 0 && beta == 1) {
return
}
var kx, ky int
if incX > 0 {
kx = 0
} else {
kx = -(lenX - 1) * incX
}
if incY > 0 {
ky = 0
} else {
ky = -(lenY - 1) * incY
}
// First form y = beta * y
if incY > 0 {
Implementation{}.Sscal(lenY, beta, y, incY)
} else {
Implementation{}.Sscal(lenY, beta, y, -incY)
}
if alpha == 0 {
return
}
// i and j are indices of the compacted banded matrix.
// off is the offset into the dense matrix (off + j = densej)
nCol := kU + 1 + kL
if tA == blas.NoTrans {
iy := ky
if incX == 1 {
for i := 0; i < min(m, n+kL); i++ {
l := max(0, kL-i)
u := min(nCol, n+kL-i)
off := max(0, i-kL)
atmp := a[i*lda+l : i*lda+u]
xtmp := x[off : off+u-l]
var sum float32
for j, v := range atmp {
sum += xtmp[j] * v
}
y[iy] += sum * alpha
iy += incY
}
return
}
for i := 0; i < min(m, n+kL); i++ {
l := max(0, kL-i)
u := min(nCol, n+kL-i)
off := max(0, i-kL)
atmp := a[i*lda+l : i*lda+u]
jx := kx
var sum float32
for _, v := range atmp {
sum += x[off*incX+jx] * v
jx += incX
}
y[iy] += sum * alpha
iy += incY
}
return
}
if incX == 1 {
for i := 0; i < min(m, n+kL); i++ {
l := max(0, kL-i)
u := min(nCol, n+kL-i)
off := max(0, i-kL)
atmp := a[i*lda+l : i*lda+u]
tmp := alpha * x[i]
jy := ky
for _, v := range atmp {
y[jy+off*incY] += tmp * v
jy += incY
}
}
return
}
ix := kx
for i := 0; i < min(m, n+kL); i++ {
l := max(0, kL-i)
u := min(nCol, n+kL-i)
off := max(0, i-kL)
atmp := a[i*lda+l : i*lda+u]
tmp := alpha * x[ix]
jy := ky
for _, v := range atmp {
y[jy+off*incY] += tmp * v
jy += incY
}
ix += incX
}
}
// Strmv computes
// x = A * x if tA == blas.NoTrans
// x = A^T * x if tA == blas.Trans or blas.ConjTrans
// A is an n×n Triangular matrix and x is a vector.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if n < 0 {
panic(nLT0)
}
if lda < n {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if lda*(n-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
if n == 0 {
return
}
nonUnit := d != blas.Unit
if n == 1 {
if nonUnit {
x[0] *= a[0]
}
return
}
var kx int
if incX <= 0 {
kx = -(n - 1) * incX
}
if tA == blas.NoTrans {
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
ilda := i * lda
var tmp float32
if nonUnit {
tmp = a[ilda+i] * x[i]
} else {
tmp = x[i]
}
xtmp := x[i+1:]
x[i] = tmp + f32.DotUnitary(a[ilda+i+1:ilda+n], xtmp)
}
return
}
ix := kx
for i := 0; i < n; i++ {
ilda := i * lda
var tmp float32
if nonUnit {
tmp = a[ilda+i] * x[ix]
} else {
tmp = x[ix]
}
x[ix] = tmp + f32.DotInc(x, a[ilda+i+1:ilda+n], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
ix += incX
}
return
}
if incX == 1 {
for i := n - 1; i >= 0; i-- {
ilda := i * lda
var tmp float32
if nonUnit {
tmp += a[ilda+i] * x[i]
} else {
tmp = x[i]
}
x[i] = tmp + f32.DotUnitary(a[ilda:ilda+i], x)
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
ilda := i * lda
var tmp float32
if nonUnit {
tmp = a[ilda+i] * x[ix]
} else {
tmp = x[ix]
}
x[ix] = tmp + f32.DotInc(x, a[ilda:ilda+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
ix -= incX
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
if incX == 1 {
for i := n - 1; i >= 0; i-- {
ilda := i * lda
xi := x[i]
f32.AxpyUnitary(xi, a[ilda+i+1:ilda+n], x[i+1:n])
if nonUnit {
x[i] *= a[ilda+i]
}
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
ilda := i * lda
xi := x[ix]
f32.AxpyInc(xi, a[ilda+i+1:ilda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(kx+(i+1)*incX))
if nonUnit {
x[ix] *= a[ilda+i]
}
ix -= incX
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
ilda := i * lda
xi := x[i]
f32.AxpyUnitary(xi, a[ilda:ilda+i], x)
if nonUnit {
x[i] *= a[i*lda+i]
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
ilda := i * lda
xi := x[ix]
f32.AxpyInc(xi, a[ilda:ilda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
if nonUnit {
x[ix] *= a[ilda+i]
}
ix += incX
}
}
// Strsv solves
// A * x = b if tA == blas.NoTrans
// A^T * x = b if tA == blas.Trans or blas.ConjTrans
// A is an n×n triangular matrix and x is a vector.
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Strsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int) {
// Test the input parameters
// Verify inputs
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if n < 0 {
panic(nLT0)
}
if lda*(n-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
// Quick return if possible
if n == 0 {
return
}
if n == 1 {
if d == blas.NonUnit {
x[0] /= a[0]
}
return
}
var kx int
if incX < 0 {
kx = -(n - 1) * incX
}
nonUnit := d == blas.NonUnit
if tA == blas.NoTrans {
if ul == blas.Upper {
if incX == 1 {
for i := n - 1; i >= 0; i-- {
var sum float32
atmp := a[i*lda+i+1 : i*lda+n]
for j, v := range atmp {
jv := i + j + 1
sum += x[jv] * v
}
x[i] -= sum
if nonUnit {
x[i] /= a[i*lda+i]
}
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
var sum float32
jx := ix + incX
atmp := a[i*lda+i+1 : i*lda+n]
for _, v := range atmp {
sum += x[jx] * v
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= a[i*lda+i]
}
ix -= incX
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
var sum float32
atmp := a[i*lda : i*lda+i]
for j, v := range atmp {
sum += x[j] * v
}
x[i] -= sum
if nonUnit {
x[i] /= a[i*lda+i]
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
jx := kx
var sum float32
atmp := a[i*lda : i*lda+i]
for _, v := range atmp {
sum += x[jx] * v
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= a[i*lda+i]
}
ix += incX
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
if nonUnit {
x[i] /= a[i*lda+i]
}
xi := x[i]
atmp := a[i*lda+i+1 : i*lda+n]
for j, v := range atmp {
jv := j + i + 1
x[jv] -= v * xi
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
if nonUnit {
x[ix] /= a[i*lda+i]
}
xi := x[ix]
jx := kx + (i+1)*incX
atmp := a[i*lda+i+1 : i*lda+n]
for _, v := range atmp {
x[jx] -= v * xi
jx += incX
}
ix += incX
}
return
}
if incX == 1 {
for i := n - 1; i >= 0; i-- {
if nonUnit {
x[i] /= a[i*lda+i]
}
xi := x[i]
atmp := a[i*lda : i*lda+i]
for j, v := range atmp {
x[j] -= v * xi
}
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
if nonUnit {
x[ix] /= a[i*lda+i]
}
xi := x[ix]
jx := kx
atmp := a[i*lda : i*lda+i]
for _, v := range atmp {
x[jx] -= v * xi
jx += incX
}
ix -= incX
}
}
// Ssymv computes
// y = alpha * A * x + beta * y,
// where a is an n×n symmetric matrix, x and y are vectors, and alpha and
// beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssymv(ul blas.Uplo, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
// Check inputs
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(negativeN)
}
if lda > 1 && lda < n {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(badY)
}
if lda*(n-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
// Quick return if possible
if n == 0 || (alpha == 0 && beta == 1) {
return
}
// Set up start points
var kx, ky int
if incX > 0 {
kx = 0
} else {
kx = -(n - 1) * incX
}
if incY > 0 {
ky = 0
} else {
ky = -(n - 1) * incY
}
// Form y = beta * y
if beta != 1 {
if incY > 0 {
Implementation{}.Sscal(n, beta, y, incY)
} else {
Implementation{}.Sscal(n, beta, y, -incY)
}
}
if alpha == 0 {
return
}
if n == 1 {
y[0] += alpha * a[0] * x[0]
return
}
if ul == blas.Upper {
if incX == 1 {
iy := ky
for i := 0; i < n; i++ {
xv := x[i] * alpha
sum := x[i] * a[i*lda+i]
jy := ky + (i+1)*incY
atmp := a[i*lda+i+1 : i*lda+n]
for j, v := range atmp {
jp := j + i + 1
sum += x[jp] * v
y[jy] += xv * v
jy += incY
}
y[iy] += alpha * sum
iy += incY
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
xv := x[ix] * alpha
sum := x[ix] * a[i*lda+i]
jx := kx + (i+1)*incX
jy := ky + (i+1)*incY
atmp := a[i*lda+i+1 : i*lda+n]
for _, v := range atmp {
sum += x[jx] * v
y[jy] += xv * v
jx += incX
jy += incY
}
y[iy] += alpha * sum
ix += incX
iy += incY
}
return
}
// Cases where a is lower triangular.
if incX == 1 {
iy := ky
for i := 0; i < n; i++ {
jy := ky
xv := alpha * x[i]
atmp := a[i*lda : i*lda+i]
var sum float32
for j, v := range atmp {
sum += x[j] * v
y[jy] += xv * v
jy += incY
}
sum += x[i] * a[i*lda+i]
sum *= alpha
y[iy] += sum
iy += incY
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
jx := kx
jy := ky
xv := alpha * x[ix]
atmp := a[i*lda : i*lda+i]
var sum float32
for _, v := range atmp {
sum += x[jx] * v
y[jy] += xv * v
jx += incX
jy += incY
}
sum += x[ix] * a[i*lda+i]
sum *= alpha
y[iy] += sum
ix += incX
iy += incY
}
}
// Stbmv computes
// x = A * x if tA == blas.NoTrans
// x = A^T * x if tA == blas.Trans or blas.ConjTrans
// where A is an n×n triangular banded matrix with k diagonals, and x is a vector.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
if lda*(n-1)+k+1 > len(a) || lda < k+1 {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if n == 0 {
return
}
var kx int
if incX <= 0 {
kx = -(n - 1) * incX
} else if incX != 1 {
kx = 0
}
nonunit := d != blas.Unit
if tA == blas.NoTrans {
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
u := min(1+k, n-i)
var sum float32
atmp := a[i*lda:]
xtmp := x[i:]
for j := 1; j < u; j++ {
sum += xtmp[j] * atmp[j]
}
if nonunit {
sum += xtmp[0] * atmp[0]
} else {
sum += xtmp[0]
}
x[i] = sum
}
return
}
ix := kx
for i := 0; i < n; i++ {
u := min(1+k, n-i)
var sum float32
atmp := a[i*lda:]
jx := incX
for j := 1; j < u; j++ {
sum += x[ix+jx] * atmp[j]
jx += incX
}
if nonunit {
sum += x[ix] * atmp[0]
} else {
sum += x[ix]
}
x[ix] = sum
ix += incX
}
return
}
if incX == 1 {
for i := n - 1; i >= 0; i-- {
l := max(0, k-i)
atmp := a[i*lda:]
var sum float32
for j := l; j < k; j++ {
sum += x[i-k+j] * atmp[j]
}
if nonunit {
sum += x[i] * atmp[k]
} else {
sum += x[i]
}
x[i] = sum
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
l := max(0, k-i)
atmp := a[i*lda:]
var sum float32
jx := l * incX
for j := l; j < k; j++ {
sum += x[ix-k*incX+jx] * atmp[j]
jx += incX
}
if nonunit {
sum += x[ix] * atmp[k]
} else {
sum += x[ix]
}
x[ix] = sum
ix -= incX
}
return
}
if ul == blas.Upper {
if incX == 1 {
for i := n - 1; i >= 0; i-- {
u := k + 1
if i < u {
u = i + 1
}
var sum float32
for j := 1; j < u; j++ {
sum += x[i-j] * a[(i-j)*lda+j]
}
if nonunit {
sum += x[i] * a[i*lda]
} else {
sum += x[i]
}
x[i] = sum
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
u := k + 1
if i < u {
u = i + 1
}
var sum float32
jx := incX
for j := 1; j < u; j++ {
sum += x[ix-jx] * a[(i-j)*lda+j]
jx += incX
}
if nonunit {
sum += x[ix] * a[i*lda]
} else {
sum += x[ix]
}
x[ix] = sum
ix -= incX
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
u := k
if i+k >= n {
u = n - i - 1
}
var sum float32
for j := 0; j < u; j++ {
sum += x[i+j+1] * a[(i+j+1)*lda+k-j-1]
}
if nonunit {
sum += x[i] * a[i*lda+k]
} else {
sum += x[i]
}
x[i] = sum
}
return
}
ix := kx
for i := 0; i < n; i++ {
u := k
if i+k >= n {
u = n - i - 1
}
var (
sum float32
jx int
)
for j := 0; j < u; j++ {
sum += x[ix+jx+incX] * a[(i+j+1)*lda+k-j-1]
jx += incX
}
if nonunit {
sum += x[ix] * a[i*lda+k]
} else {
sum += x[ix]
}
x[ix] = sum
ix += incX
}
}
// Stpmv computes
// x = A * x if tA == blas.NoTrans
// x = A^T * x if tA == blas.Trans or blas.ConjTrans
// where A is an n×n unit triangular matrix in packed format, and x is a vector.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int) {
// Verify inputs
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if n < 0 {
panic(nLT0)
}
if len(ap) < (n*(n+1))/2 {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if n == 0 {
return
}
var kx int
if incX <= 0 {
kx = -(n - 1) * incX
}
nonUnit := d == blas.NonUnit
var offset int // Offset is the index of (i,i)
if tA == blas.NoTrans {
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
xi := x[i]
if nonUnit {
xi *= ap[offset]
}
atmp := ap[offset+1 : offset+n-i]
xtmp := x[i+1:]
for j, v := range atmp {
xi += v * xtmp[j]
}
x[i] = xi
offset += n - i
}
return
}
ix := kx
for i := 0; i < n; i++ {
xix := x[ix]
if nonUnit {
xix *= ap[offset]
}
atmp := ap[offset+1 : offset+n-i]
jx := kx + (i+1)*incX
for _, v := range atmp {
xix += v * x[jx]
jx += incX
}
x[ix] = xix
offset += n - i
ix += incX
}
return
}
if incX == 1 {
offset = n*(n+1)/2 - 1
for i := n - 1; i >= 0; i-- {
xi := x[i]
if nonUnit {
xi *= ap[offset]
}
atmp := ap[offset-i : offset]
for j, v := range atmp {
xi += v * x[j]
}
x[i] = xi
offset -= i + 1
}
return
}
ix := kx + (n-1)*incX
offset = n*(n+1)/2 - 1
for i := n - 1; i >= 0; i-- {
xix := x[ix]
if nonUnit {
xix *= ap[offset]
}
atmp := ap[offset-i : offset]
jx := kx
for _, v := range atmp {
xix += v * x[jx]
jx += incX
}
x[ix] = xix
offset -= i + 1
ix -= incX
}
return
}
// Cases where ap is transposed.
if ul == blas.Upper {
if incX == 1 {
offset = n*(n+1)/2 - 1
for i := n - 1; i >= 0; i-- {
xi := x[i]
atmp := ap[offset+1 : offset+n-i]
xtmp := x[i+1:]
for j, v := range atmp {
xtmp[j] += v * xi
}
if nonUnit {
x[i] *= ap[offset]
}
offset -= n - i + 1
}
return
}
ix := kx + (n-1)*incX
offset = n*(n+1)/2 - 1
for i := n - 1; i >= 0; i-- {
xix := x[ix]
jx := kx + (i+1)*incX
atmp := ap[offset+1 : offset+n-i]
for _, v := range atmp {
x[jx] += v * xix
jx += incX
}
if nonUnit {
x[ix] *= ap[offset]
}
offset -= n - i + 1
ix -= incX
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
xi := x[i]
atmp := ap[offset-i : offset]
for j, v := range atmp {
x[j] += v * xi
}
if nonUnit {
x[i] *= ap[offset]
}
offset += i + 2
}
return
}
ix := kx
for i := 0; i < n; i++ {
xix := x[ix]
jx := kx
atmp := ap[offset-i : offset]
for _, v := range atmp {
x[jx] += v * xix
jx += incX
}
if nonUnit {
x[ix] *= ap[offset]
}
ix += incX
offset += i + 2
}
}
// Stbsv solves
// A * x = b
// where A is an n×n triangular banded matrix with k diagonals in packed format,
// and x is a vector.
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if n < 0 {
panic(nLT0)
}
if lda*(n-1)+k+1 > len(a) || lda < k+1 {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if n == 0 {
return
}
var kx int
if incX < 0 {
kx = -(n - 1) * incX
} else {
kx = 0
}
nonUnit := d == blas.NonUnit
// Form x = A^-1 x.
// Several cases below use subslices for speed improvement.
// The incX != 1 cases usually do not because incX may be negative.
if tA == blas.NoTrans {
if ul == blas.Upper {
if incX == 1 {
for i := n - 1; i >= 0; i-- {
bands := k
if i+bands >= n {
bands = n - i - 1
}
atmp := a[i*lda+1:]
xtmp := x[i+1 : i+bands+1]
var sum float32
for j, v := range xtmp {
sum += v * atmp[j]
}
x[i] -= sum
if nonUnit {
x[i] /= a[i*lda]
}
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
max := k + 1
if i+max > n {
max = n - i
}
atmp := a[i*lda:]
var (
jx int
sum float32
)
for j := 1; j < max; j++ {
jx += incX
sum += x[ix+jx] * atmp[j]
}
x[ix] -= sum
if nonUnit {
x[ix] /= atmp[0]
}
ix -= incX
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
bands := k
if i-k < 0 {
bands = i
}
atmp := a[i*lda+k-bands:]
xtmp := x[i-bands : i]
var sum float32
for j, v := range xtmp {
sum += v * atmp[j]
}
x[i] -= sum
if nonUnit {
x[i] /= atmp[bands]
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
bands := k
if i-k < 0 {
bands = i
}
atmp := a[i*lda+k-bands:]
var (
sum float32
jx int
)
for j := 0; j < bands; j++ {
sum += x[ix-bands*incX+jx] * atmp[j]
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= atmp[bands]
}
ix += incX
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
bands := k
if i-k < 0 {
bands = i
}
var sum float32
for j := 0; j < bands; j++ {
sum += x[i-bands+j] * a[(i-bands+j)*lda+bands-j]
}
x[i] -= sum
if nonUnit {
x[i] /= a[i*lda]
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
bands := k
if i-k < 0 {
bands = i
}
var (
sum float32
jx int
)
for j := 0; j < bands; j++ {
sum += x[ix-bands*incX+jx] * a[(i-bands+j)*lda+bands-j]
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= a[i*lda]
}
ix += incX
}
return
}
if incX == 1 {
for i := n - 1; i >= 0; i-- {
bands := k
if i+bands >= n {
bands = n - i - 1
}
var sum float32
xtmp := x[i+1 : i+1+bands]
for j, v := range xtmp {
sum += v * a[(i+j+1)*lda+k-j-1]
}
x[i] -= sum
if nonUnit {
x[i] /= a[i*lda+k]
}
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
bands := k
if i+bands >= n {
bands = n - i - 1
}
var (
sum float32
jx int
)
for j := 0; j < bands; j++ {
sum += x[ix+jx+incX] * a[(i+j+1)*lda+k-j-1]
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= a[i*lda+k]
}
ix -= incX
}
}
// Ssbmv performs
// y = alpha * A * x + beta * y
// where A is an n×n symmetric banded matrix, x and y are vectors, and alpha
// and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssbmv(ul blas.Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(badY)
}
if lda*(n-1)+k+1 > len(a) || lda < k+1 {
panic(badLdA)
}
// Quick return if possible
if n == 0 || (alpha == 0 && beta == 1) {
return
}
// Set up indexes
lenX := n
lenY := n
var kx, ky int
if incX > 0 {
kx = 0
} else {
kx = -(lenX - 1) * incX
}
if incY > 0 {
ky = 0
} else {
ky = -(lenY - 1) * incY
}
// First form y = beta * y
if incY > 0 {
Implementation{}.Sscal(lenY, beta, y, incY)
} else {
Implementation{}.Sscal(lenY, beta, y, -incY)
}
if alpha == 0 {
return
}
if ul == blas.Upper {
if incX == 1 {
iy := ky
for i := 0; i < n; i++ {
atmp := a[i*lda:]
tmp := alpha * x[i]
sum := tmp * atmp[0]
u := min(k, n-i-1)
jy := incY
for j := 1; j <= u; j++ {
v := atmp[j]
sum += alpha * x[i+j] * v
y[iy+jy] += tmp * v
jy += incY
}
y[iy] += sum
iy += incY
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
atmp := a[i*lda:]
tmp := alpha * x[ix]
sum := tmp * atmp[0]
u := min(k, n-i-1)
jx := incX
jy := incY
for j := 1; j <= u; j++ {
v := atmp[j]
sum += alpha * x[ix+jx] * v
y[iy+jy] += tmp * v
jx += incX
jy += incY
}
y[iy] += sum
ix += incX
iy += incY
}
return
}
// Casses where a has bands below the diagonal.
if incX == 1 {
iy := ky
for i := 0; i < n; i++ {
l := max(0, k-i)
tmp := alpha * x[i]
jy := l * incY
atmp := a[i*lda:]
for j := l; j < k; j++ {
v := atmp[j]
y[iy] += alpha * v * x[i-k+j]
y[iy-k*incY+jy] += tmp * v
jy += incY
}
y[iy] += tmp * atmp[k]
iy += incY
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
l := max(0, k-i)
tmp := alpha * x[ix]
jx := l * incX
jy := l * incY
atmp := a[i*lda:]
for j := l; j < k; j++ {
v := atmp[j]
y[iy] += alpha * v * x[ix-k*incX+jx]
y[iy-k*incY+jy] += tmp * v
jx += incX
jy += incY
}
y[iy] += tmp * atmp[k]
ix += incX
iy += incY
}
}
// Ssyr performs the rank-one update
// a += alpha * x * x^T
// where a is an n×n symmetric matrix, and x is a vector.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32, lda int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if lda*(n-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
if alpha == 0 || n == 0 {
return
}
lenX := n
var kx int
if incX > 0 {
kx = 0
} else {
kx = -(lenX - 1) * incX
}
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
tmp := x[i] * alpha
if tmp != 0 {
atmp := a[i*lda+i : i*lda+n]
xtmp := x[i:n]
for j, v := range xtmp {
atmp[j] += v * tmp
}
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
tmp := x[ix] * alpha
if tmp != 0 {
jx := ix
atmp := a[i*lda:]
for j := i; j < n; j++ {
atmp[j] += x[jx] * tmp
jx += incX
}
}
ix += incX
}
return
}
// Cases where a is lower triangular.
if incX == 1 {
for i := 0; i < n; i++ {
tmp := x[i] * alpha
if tmp != 0 {
atmp := a[i*lda:]
xtmp := x[:i+1]
for j, v := range xtmp {
atmp[j] += tmp * v
}
}
}
return
}
ix := kx
for i := 0; i < n; i++ {
tmp := x[ix] * alpha
if tmp != 0 {
atmp := a[i*lda:]
jx := kx
for j := 0; j < i+1; j++ {
atmp[j] += tmp * x[jx]
jx += incX
}
}
ix += incX
}
}
// Ssyr2 performs the symmetric rank-two update
// A += alpha * x * y^T + alpha * y * x^T
// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Ssyr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(badY)
}
if lda*(n-1)+n > len(a) || lda < max(1, n) {
panic(badLdA)
}
if alpha == 0 {
return
}
var ky, kx int
if incY > 0 {
ky = 0
} else {
ky = -(n - 1) * incY
}
if incX > 0 {
kx = 0
} else {
kx = -(n - 1) * incX
}
if ul == blas.Upper {
if incX == 1 && incY == 1 {
for i := 0; i < n; i++ {
xi := x[i]
yi := y[i]
atmp := a[i*lda:]
for j := i; j < n; j++ {
atmp[j] += alpha * (xi*y[j] + x[j]*yi)
}
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
jx := kx + i*incX
jy := ky + i*incY
xi := x[ix]
yi := y[iy]
atmp := a[i*lda:]
for j := i; j < n; j++ {
atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
jx += incX
jy += incY
}
ix += incX
iy += incY
}
return
}
if incX == 1 && incY == 1 {
for i := 0; i < n; i++ {
xi := x[i]
yi := y[i]
atmp := a[i*lda:]
for j := 0; j <= i; j++ {
atmp[j] += alpha * (xi*y[j] + x[j]*yi)
}
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
jx := kx
jy := ky
xi := x[ix]
yi := y[iy]
atmp := a[i*lda:]
for j := 0; j <= i; j++ {
atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
jx += incX
jy += incY
}
ix += incX
iy += incY
}
}
// Stpsv solves
// A * x = b if tA == blas.NoTrans
// A^T * x = b if tA == blas.Trans or blas.ConjTrans
// where A is an n×n triangular matrix in packed format and x is a vector.
// At entry to the function, x contains the values of b, and the result is
// stored in place into x.
//
// No test for singularity or near-singularity is included in this
// routine. Such tests must be performed before calling this routine.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Stpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int) {
// Verify inputs
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if n < 0 {
panic(nLT0)
}
if len(ap) < (n*(n+1))/2 {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if n == 0 {
return
}
var kx int
if incX <= 0 {
kx = -(n - 1) * incX
}
nonUnit := d == blas.NonUnit
var offset int // Offset is the index of (i,i)
if tA == blas.NoTrans {
if ul == blas.Upper {
offset = n*(n+1)/2 - 1
if incX == 1 {
for i := n - 1; i >= 0; i-- {
atmp := ap[offset+1 : offset+n-i]
xtmp := x[i+1:]
var sum float32
for j, v := range atmp {
sum += v * xtmp[j]
}
x[i] -= sum
if nonUnit {
x[i] /= ap[offset]
}
offset -= n - i + 1
}
return
}
ix := kx + (n-1)*incX
for i := n - 1; i >= 0; i-- {
atmp := ap[offset+1 : offset+n-i]
jx := kx + (i+1)*incX
var sum float32
for _, v := range atmp {
sum += v * x[jx]
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= ap[offset]
}
ix -= incX
offset -= n - i + 1
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
atmp := ap[offset-i : offset]
var sum float32
for j, v := range atmp {
sum += v * x[j]
}
x[i] -= sum
if nonUnit {
x[i] /= ap[offset]
}
offset += i + 2
}
return
}
ix := kx
for i := 0; i < n; i++ {
jx := kx
atmp := ap[offset-i : offset]
var sum float32
for _, v := range atmp {
sum += v * x[jx]
jx += incX
}
x[ix] -= sum
if nonUnit {
x[ix] /= ap[offset]
}
ix += incX
offset += i + 2
}
return
}
// Cases where ap is transposed.
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
if nonUnit {
x[i] /= ap[offset]
}
xi := x[i]
atmp := ap[offset+1 : offset+n-i]
xtmp := x[i+1:]
for j, v := range atmp {
xtmp[j] -= v * xi
}
offset += n - i
}
return
}
ix := kx
for i := 0; i < n; i++ {
if nonUnit {
x[ix] /= ap[offset]
}
xix := x[ix]
atmp := ap[offset+1 : offset+n-i]
jx := kx + (i+1)*incX
for _, v := range atmp {
x[jx] -= v * xix
jx += incX
}
ix += incX
offset += n - i
}
return
}
if incX == 1 {
offset = n*(n+1)/2 - 1
for i := n - 1; i >= 0; i-- {
if nonUnit {
x[i] /= ap[offset]
}
xi := x[i]
atmp := ap[offset-i : offset]
for j, v := range atmp {
x[j] -= v * xi
}
offset -= i + 1
}
return
}
ix := kx + (n-1)*incX
offset = n*(n+1)/2 - 1
for i := n - 1; i >= 0; i-- {
if nonUnit {
x[ix] /= ap[offset]
}
xix := x[ix]
atmp := ap[offset-i : offset]
jx := kx
for _, v := range atmp {
x[jx] -= v * xix
jx += incX
}
ix -= incX
offset -= i + 1
}
}
// Sspmv performs
// y = alpha * A * x + beta * y,
// where A is an n×n symmetric matrix in packed format, x and y are vectors
// and alpha and beta are scalars.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sspmv(ul blas.Uplo, n int, alpha float32, a []float32, x []float32, incX int, beta float32, y []float32, incY int) {
// Verify inputs
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if len(a) < (n*(n+1))/2 {
panic(badLdA)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(badY)
}
// Quick return if possible
if n == 0 || (alpha == 0 && beta == 1) {
return
}
// Set up start points
var kx, ky int
if incX > 0 {
kx = 0
} else {
kx = -(n - 1) * incX
}
if incY > 0 {
ky = 0
} else {
ky = -(n - 1) * incY
}
// Form y = beta * y
if beta != 1 {
if incY > 0 {
Implementation{}.Sscal(n, beta, y, incY)
} else {
Implementation{}.Sscal(n, beta, y, -incY)
}
}
if alpha == 0 {
return
}
if n == 1 {
y[0] += alpha * a[0] * x[0]
return
}
var offset int // Offset is the index of (i,i).
if ul == blas.Upper {
if incX == 1 {
iy := ky
for i := 0; i < n; i++ {
xv := x[i] * alpha
sum := a[offset] * x[i]
atmp := a[offset+1 : offset+n-i]
xtmp := x[i+1:]
jy := ky + (i+1)*incY
for j, v := range atmp {
sum += v * xtmp[j]
y[jy] += v * xv
jy += incY
}
y[iy] += alpha * sum
iy += incY
offset += n - i
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
xv := x[ix] * alpha
sum := a[offset] * x[ix]
atmp := a[offset+1 : offset+n-i]
jx := kx + (i+1)*incX
jy := ky + (i+1)*incY
for _, v := range atmp {
sum += v * x[jx]
y[jy] += v * xv
jx += incX
jy += incY
}
y[iy] += alpha * sum
ix += incX
iy += incY
offset += n - i
}
return
}
if incX == 1 {
iy := ky
for i := 0; i < n; i++ {
xv := x[i] * alpha
atmp := a[offset-i : offset]
jy := ky
var sum float32
for j, v := range atmp {
sum += v * x[j]
y[jy] += v * xv
jy += incY
}
sum += a[offset] * x[i]
y[iy] += alpha * sum
iy += incY
offset += i + 2
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
xv := x[ix] * alpha
atmp := a[offset-i : offset]
jx := kx
jy := ky
var sum float32
for _, v := range atmp {
sum += v * x[jx]
y[jy] += v * xv
jx += incX
jy += incY
}
sum += a[offset] * x[ix]
y[iy] += alpha * sum
ix += incX
iy += incY
offset += i + 2
}
}
// Sspr computes the rank-one operation
// a += alpha * x * x^T
// where a is an n×n symmetric matrix in packed format, x is a vector, and
// alpha is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sspr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if incX == 0 {
panic(zeroIncX)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if len(a) < (n*(n+1))/2 {
panic(badLdA)
}
if alpha == 0 || n == 0 {
return
}
lenX := n
var kx int
if incX > 0 {
kx = 0
} else {
kx = -(lenX - 1) * incX
}
var offset int // Offset is the index of (i,i).
if ul == blas.Upper {
if incX == 1 {
for i := 0; i < n; i++ {
atmp := a[offset:]
xv := alpha * x[i]
xtmp := x[i:n]
for j, v := range xtmp {
atmp[j] += xv * v
}
offset += n - i
}
return
}
ix := kx
for i := 0; i < n; i++ {
jx := kx + i*incX
atmp := a[offset:]
xv := alpha * x[ix]
for j := 0; j < n-i; j++ {
atmp[j] += xv * x[jx]
jx += incX
}
ix += incX
offset += n - i
}
return
}
if incX == 1 {
for i := 0; i < n; i++ {
atmp := a[offset-i:]
xv := alpha * x[i]
xtmp := x[:i+1]
for j, v := range xtmp {
atmp[j] += xv * v
}
offset += i + 2
}
return
}
ix := kx
for i := 0; i < n; i++ {
jx := kx
atmp := a[offset-i:]
xv := alpha * x[ix]
for j := 0; j <= i; j++ {
atmp[j] += xv * x[jx]
jx += incX
}
ix += incX
offset += i + 2
}
}
// Sspr2 performs the symmetric rank-2 update
// A += alpha * x * y^T + alpha * y * x^T,
// where A is an n×n symmetric matrix in packed format, x and y are vectors,
// and alpha is a scalar.
//
// Float32 implementations are autogenerated and not directly tested.
func (Implementation) Sspr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, ap []float32) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if incX == 0 {
panic(zeroIncX)
}
if incY == 0 {
panic(zeroIncY)
}
if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
panic(badX)
}
if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
panic(badY)
}
if len(ap) < (n*(n+1))/2 {
panic(badLdA)
}
if alpha == 0 {
return
}
var ky, kx int
if incY > 0 {
ky = 0
} else {
ky = -(n - 1) * incY
}
if incX > 0 {
kx = 0
} else {
kx = -(n - 1) * incX
}
var offset int // Offset is the index of (i,i).
if ul == blas.Upper {
if incX == 1 && incY == 1 {
for i := 0; i < n; i++ {
atmp := ap[offset:]
xi := x[i]
yi := y[i]
xtmp := x[i:n]
ytmp := y[i:n]
for j, v := range xtmp {
atmp[j] += alpha * (xi*ytmp[j] + v*yi)
}
offset += n - i
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
jx := kx + i*incX
jy := ky + i*incY
atmp := ap[offset:]
xi := x[ix]
yi := y[iy]
for j := 0; j < n-i; j++ {
atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
jx += incX
jy += incY
}
ix += incX
iy += incY
offset += n - i
}
return
}
if incX == 1 && incY == 1 {
for i := 0; i < n; i++ {
atmp := ap[offset-i:]
xi := x[i]
yi := y[i]
xtmp := x[:i+1]
for j, v := range xtmp {
atmp[j] += alpha * (xi*y[j] + v*yi)
}
offset += i + 2
}
return
}
ix := kx
iy := ky
for i := 0; i < n; i++ {
jx := kx
jy := ky
atmp := ap[offset-i:]
for j := 0; j <= i; j++ {
atmp[j] += alpha * (x[ix]*y[jy] + x[jx]*y[iy])
jx += incX
jy += incY
}
ix += incX
iy += incY
offset += i + 2
}
}