blob: cca86e8433151d719a8e710ff97ef7094ec7d7ba [file] [log] [blame]
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package f64
import (
"math"
"math/rand"
"testing"
)
var (
nan = math.NaN()
inf = math.Inf(1)
)
// newGuardedVector allocates a new slice and returns it as three subslices.
// v is a strided vector that contains elements of data at indices i*inc and
// NaN elsewhere. frontGuard and backGuard are filled with NaN values, and
// their backing arrays are directly adjacent to v in memory. The three slices
// can be used to detect invalid memory reads and writes.
func newGuardedVector(data []float64, inc int) (v, frontGuard, backGuard []float64) {
if inc < 0 {
inc = -inc
}
guard := 2 * inc
size := (len(data)-1)*inc + 1
whole := make([]float64, size+2*guard)
v = whole[guard : len(whole)-guard]
for i := range whole {
whole[i] = math.NaN()
}
for i, d := range data {
v[i*inc] = d
}
return v, whole[:guard], whole[len(whole)-guard:]
}
// allNaN returns true if x contains only NaN values, and false otherwise.
func allNaN(x []float64) bool {
for _, v := range x {
if !math.IsNaN(v) {
return false
}
}
return true
}
// equalStrided returns true if the strided vector x contains elements of the
// dense vector ref at indices i*inc, false otherwise.
func equalStrided(ref, x []float64, inc int) bool {
if inc < 0 {
inc = -inc
}
for i, v := range ref {
if !same(x[i*inc], v) {
return false
}
}
return true
}
// nonStridedWrite returns false if all elements of x at non-stride indices are
// equal to NaN, true otherwise.
func nonStridedWrite(x []float64, inc int) bool {
if inc < 0 {
inc = -inc
}
for i, v := range x {
if i%inc != 0 && !math.IsNaN(v) {
return true
}
}
return false
}
// guardVector copies the source vector (vec) into a new slice with guards.
// Guards guarded[:gdLn] and guarded[len-gdLn:] will be filled with sigil value gdVal.
func guardVector(vec []float64, gdVal float64, gdLn int) (guarded []float64) {
guarded = make([]float64, len(vec)+gdLn*2)
copy(guarded[gdLn:], vec)
for i := 0; i < gdLn; i++ {
guarded[i] = gdVal
guarded[len(guarded)-1-i] = gdVal
}
return guarded
}
// isValidGuard will test for violated guards, generated by guardVector.
func isValidGuard(vec []float64, gdVal float64, gdLn int) bool {
for i := 0; i < gdLn; i++ {
if !same(vec[i], gdVal) || !same(vec[len(vec)-1-i], gdVal) {
return false
}
}
return true
}
// guardIncVector copies the source vector (vec) into a new incremented slice with guards.
// End guards will be length gdLen.
// Internal and end guards will be filled with sigil value gdVal.
func guardIncVector(vec []float64, gdVal float64, inc, gdLen int) (guarded []float64) {
if inc < 0 {
inc = -inc
}
inrLen := len(vec) * inc
guarded = make([]float64, inrLen+gdLen*2)
for i := range guarded {
guarded[i] = gdVal
}
for i, v := range vec {
guarded[gdLen+i*inc] = v
}
return guarded
}
// checkValidIncGuard will test for violated guards, generated by guardIncVector
func checkValidIncGuard(t *testing.T, vec []float64, gdVal float64, inc, gdLen int) {
srcLn := len(vec) - 2*gdLen
for i := range vec {
switch {
case same(vec[i], gdVal):
// Correct value
case (i-gdLen)%inc == 0 && (i-gdLen)/inc < len(vec):
// Ignore input values
case i < gdLen:
t.Errorf("Front guard violated at %d %v", i, vec[:gdLen])
case i > gdLen+srcLn:
t.Errorf("Back guard violated at %d %v", i-gdLen-srcLn, vec[gdLen+srcLn:])
default:
t.Errorf("Internal guard violated at %d %v", i-gdLen, vec[gdLen:gdLen+srcLn])
}
}
}
// same tests for nan-aware equality.
func same(a, b float64) bool {
return a == b || (math.IsNaN(a) && math.IsNaN(b))
}
var ( // Offset sets for testing alignment handling in Unitary assembly functions.
align1 = []int{0, 1}
align2 = newIncSet(0, 1)
align3 = newIncToSet(0, 1)
)
type incSet struct {
x, y int
}
// genInc will generate all (x,y) combinations of the input increment set.
func newIncSet(inc ...int) []incSet {
n := len(inc)
is := make([]incSet, n*n)
for x := range inc {
for y := range inc {
is[x*n+y] = incSet{inc[x], inc[y]}
}
}
return is
}
type incToSet struct {
dst, x, y int
}
// genIncTo will generate all (dst,x,y) combinations of the input increment set.
func newIncToSet(inc ...int) []incToSet {
n := len(inc)
is := make([]incToSet, n*n*n)
for i, dst := range inc {
for x := range inc {
for y := range inc {
is[i*n*n+x*n+y] = incToSet{dst, inc[x], inc[y]}
}
}
}
return is
}
var benchSink []float64
func randomSlice(n, inc int) []float64 {
if inc < 0 {
inc = -inc
}
x := make([]float64, (n-1)*inc+1)
for i := range x {
x[i] = rand.Float64()
}
return x
}
func randSlice(n, inc int, r *rand.Rand) []float64 {
if inc < 0 {
inc = -inc
}
x := make([]float64, (n-1)*inc+1)
for i := range x {
x[i] = r.Float64()
}
return x
}