blob: cca86e8433151d719a8e710ff97ef7094ec7d7ba [file] [log] [blame]
 // Copyright ©2015 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package f64 import ( "math" "math/rand" "testing" ) var ( nan = math.NaN() inf = math.Inf(1) ) // newGuardedVector allocates a new slice and returns it as three subslices. // v is a strided vector that contains elements of data at indices i*inc and // NaN elsewhere. frontGuard and backGuard are filled with NaN values, and // their backing arrays are directly adjacent to v in memory. The three slices // can be used to detect invalid memory reads and writes. func newGuardedVector(data []float64, inc int) (v, frontGuard, backGuard []float64) { if inc < 0 { inc = -inc } guard := 2 * inc size := (len(data)-1)*inc + 1 whole := make([]float64, size+2*guard) v = whole[guard : len(whole)-guard] for i := range whole { whole[i] = math.NaN() } for i, d := range data { v[i*inc] = d } return v, whole[:guard], whole[len(whole)-guard:] } // allNaN returns true if x contains only NaN values, and false otherwise. func allNaN(x []float64) bool { for _, v := range x { if !math.IsNaN(v) { return false } } return true } // equalStrided returns true if the strided vector x contains elements of the // dense vector ref at indices i*inc, false otherwise. func equalStrided(ref, x []float64, inc int) bool { if inc < 0 { inc = -inc } for i, v := range ref { if !same(x[i*inc], v) { return false } } return true } // nonStridedWrite returns false if all elements of x at non-stride indices are // equal to NaN, true otherwise. func nonStridedWrite(x []float64, inc int) bool { if inc < 0 { inc = -inc } for i, v := range x { if i%inc != 0 && !math.IsNaN(v) { return true } } return false } // guardVector copies the source vector (vec) into a new slice with guards. // Guards guarded[:gdLn] and guarded[len-gdLn:] will be filled with sigil value gdVal. func guardVector(vec []float64, gdVal float64, gdLn int) (guarded []float64) { guarded = make([]float64, len(vec)+gdLn*2) copy(guarded[gdLn:], vec) for i := 0; i < gdLn; i++ { guarded[i] = gdVal guarded[len(guarded)-1-i] = gdVal } return guarded } // isValidGuard will test for violated guards, generated by guardVector. func isValidGuard(vec []float64, gdVal float64, gdLn int) bool { for i := 0; i < gdLn; i++ { if !same(vec[i], gdVal) || !same(vec[len(vec)-1-i], gdVal) { return false } } return true } // guardIncVector copies the source vector (vec) into a new incremented slice with guards. // End guards will be length gdLen. // Internal and end guards will be filled with sigil value gdVal. func guardIncVector(vec []float64, gdVal float64, inc, gdLen int) (guarded []float64) { if inc < 0 { inc = -inc } inrLen := len(vec) * inc guarded = make([]float64, inrLen+gdLen*2) for i := range guarded { guarded[i] = gdVal } for i, v := range vec { guarded[gdLen+i*inc] = v } return guarded } // checkValidIncGuard will test for violated guards, generated by guardIncVector func checkValidIncGuard(t *testing.T, vec []float64, gdVal float64, inc, gdLen int) { srcLn := len(vec) - 2*gdLen for i := range vec { switch { case same(vec[i], gdVal): // Correct value case (i-gdLen)%inc == 0 && (i-gdLen)/inc < len(vec): // Ignore input values case i < gdLen: t.Errorf("Front guard violated at %d %v", i, vec[:gdLen]) case i > gdLen+srcLn: t.Errorf("Back guard violated at %d %v", i-gdLen-srcLn, vec[gdLen+srcLn:]) default: t.Errorf("Internal guard violated at %d %v", i-gdLen, vec[gdLen:gdLen+srcLn]) } } } // same tests for nan-aware equality. func same(a, b float64) bool { return a == b || (math.IsNaN(a) && math.IsNaN(b)) } var ( // Offset sets for testing alignment handling in Unitary assembly functions. align1 = []int{0, 1} align2 = newIncSet(0, 1) align3 = newIncToSet(0, 1) ) type incSet struct { x, y int } // genInc will generate all (x,y) combinations of the input increment set. func newIncSet(inc ...int) []incSet { n := len(inc) is := make([]incSet, n*n) for x := range inc { for y := range inc { is[x*n+y] = incSet{inc[x], inc[y]} } } return is } type incToSet struct { dst, x, y int } // genIncTo will generate all (dst,x,y) combinations of the input increment set. func newIncToSet(inc ...int) []incToSet { n := len(inc) is := make([]incToSet, n*n*n) for i, dst := range inc { for x := range inc { for y := range inc { is[i*n*n+x*n+y] = incToSet{dst, inc[x], inc[y]} } } } return is } var benchSink []float64 func randomSlice(n, inc int) []float64 { if inc < 0 { inc = -inc } x := make([]float64, (n-1)*inc+1) for i := range x { x[i] = rand.Float64() } return x } func randSlice(n, inc int, r *rand.Rand) []float64 { if inc < 0 { inc = -inc } x := make([]float64, (n-1)*inc+1) for i := range x { x[i] = r.Float64() } return x }