blob: b530ada7e5cf3747b97b7fcfcb258a4f92339b1e [file] [log] [blame]
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const (
badSliceLength = "mat: improper slice length"
badLU = "mat: invalid LU factorization"
)
// LU is a square n×n matrix represented by its LU factorization with partial
// pivoting.
//
// The factorization has the form
//
// A = P * L * U
//
// where P is a permutation matrix, L is lower triangular with unit diagonal
// elements, and U is upper triangular.
//
// Note that this matrix representation is useful for certain operations, in
// particular for solving linear systems of equations. It is very inefficient at
// other operations, in particular At is slow.
type LU struct {
lu *Dense
swaps []int
piv []int
cond float64
ok bool // Whether A is nonsingular
}
var _ Matrix = (*LU)(nil)
// Dims returns the dimensions of the matrix A.
func (lu *LU) Dims() (r, c int) {
if lu.lu == nil {
return 0, 0
}
return lu.lu.Dims()
}
// At returns the element of A at row i, column j.
func (lu *LU) At(i, j int) float64 {
n, _ := lu.Dims()
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
i = lu.piv[i]
var val float64
for k := 0; k < min(i, j+1); k++ {
val += lu.lu.at(i, k) * lu.lu.at(k, j)
}
if i <= j {
val += lu.lu.at(i, j)
}
return val
}
// T performs an implicit transpose by returning the receiver inside a
// Transpose.
func (lu *LU) T() Matrix {
return Transpose{lu}
}
// updateCond updates the stored condition number of the matrix. anorm is the
// norm of the original matrix. If anorm is negative it will be estimated.
func (lu *LU) updateCond(anorm float64, norm lapack.MatrixNorm) {
n := lu.lu.mat.Cols
work := getFloat64s(4*n, false)
defer putFloat64s(work)
iwork := getInts(n, false)
defer putInts(iwork)
if anorm < 0 {
// This is an approximation. By the definition of a norm,
// |AB| <= |A| |B|.
// Since A = L*U, we get for the condition number κ that
// κ(A) := |A| |A^-1| = |L*U| |A^-1| <= |L| |U| |A^-1|,
// so this will overestimate the condition number somewhat.
// The norm of the original factorized matrix cannot be stored
// because of update possibilities.
u := lu.lu.asTriDense(n, blas.NonUnit, blas.Upper)
l := lu.lu.asTriDense(n, blas.Unit, blas.Lower)
unorm := lapack64.Lantr(norm, u.mat, work)
lnorm := lapack64.Lantr(norm, l.mat, work)
anorm = unorm * lnorm
}
v := lapack64.Gecon(norm, lu.lu.mat, anorm, work, iwork)
lu.cond = 1 / v
}
// Factorize computes the LU factorization of the square matrix A and stores the
// result in the receiver. The LU decomposition will complete regardless of the
// singularity of a.
//
// The L and U matrix factors can be extracted from the factorization using the
// LTo and UTo methods. The matrix P can be extracted as a row permutation using
// the RowPivots method and applied using Dense.PermuteRows.
func (lu *LU) Factorize(a Matrix) {
lu.factorize(a, CondNorm)
}
func (lu *LU) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m != n {
panic(ErrSquare)
}
if lu.lu == nil {
lu.lu = NewDense(n, n, nil)
} else {
lu.lu.Reset()
lu.lu.reuseAsNonZeroed(n, n)
}
lu.lu.Copy(a)
lu.swaps = useInt(lu.swaps, n)
lu.piv = useInt(lu.piv, n)
work := getFloat64s(n, false)
anorm := lapack64.Lange(norm, lu.lu.mat, work)
putFloat64s(work)
lu.ok = lapack64.Getrf(lu.lu.mat, lu.swaps)
lu.updatePivots(lu.swaps)
lu.updateCond(anorm, norm)
}
func (lu *LU) updatePivots(swaps []int) {
// Replay the sequence of row swaps in order to find the row permutation.
for i := range lu.piv {
lu.piv[i] = i
}
n, _ := lu.Dims()
for i := n - 1; i >= 0; i-- {
v := swaps[i]
lu.piv[i], lu.piv[v] = lu.piv[v], lu.piv[i]
}
}
// isValid returns whether the receiver contains a factorization.
func (lu *LU) isValid() bool {
return lu.lu != nil && !lu.lu.IsEmpty()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lu *LU) Cond() float64 {
if !lu.isValid() {
panic(badLU)
}
return lu.cond
}
// Reset resets the factorization so that it can be reused as the receiver of a
// dimensionally restricted operation.
func (lu *LU) Reset() {
if lu.lu != nil {
lu.lu.Reset()
}
lu.swaps = lu.swaps[:0]
lu.piv = lu.piv[:0]
}
func (lu *LU) isZero() bool {
return len(lu.swaps) == 0
}
// Det returns the determinant of the matrix that has been factorized. In many
// expressions, using LogDet will be more numerically stable.
// Det will panic if the receiver does not contain a factorization.
func (lu *LU) Det() float64 {
if !lu.ok {
return 0
}
det, sign := lu.LogDet()
return math.Exp(det) * sign
}
// LogDet returns the log of the determinant and the sign of the determinant
// for the matrix that has been factorized. Numerical stability in product and
// division expressions is generally improved by working in log space.
// LogDet will panic if the receiver does not contain a factorization.
func (lu *LU) LogDet() (det float64, sign float64) {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
logDiag := getFloat64s(n, false)
defer putFloat64s(logDiag)
sign = 1.0
for i := 0; i < n; i++ {
v := lu.lu.at(i, i)
if v < 0 {
sign *= -1
}
if lu.swaps[i] != i {
sign *= -1
}
logDiag[i] = math.Log(math.Abs(v))
}
return floats.Sum(logDiag), sign
}
// RowPivots returns the row permutation that represents the permutation matrix
// P from the LU factorization
//
// A = P * L * U.
//
// If dst is nil, a new slice is allocated and returned. If dst is not nil and
// the length of dst does not equal the size of the factorized matrix, RowPivots
// will panic. RowPivots will panic if the receiver does not contain a
// factorization.
func (lu *LU) RowPivots(dst []int) []int {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst == nil {
dst = make([]int, n)
}
if len(dst) != n {
panic(badSliceLength)
}
copy(dst, lu.piv)
return dst
}
// Pivot returns the row pivots of the receiver.
//
// Deprecated: Use RowPivots instead.
func (lu *LU) Pivot(dst []int) []int {
return lu.RowPivots(dst)
}
// RankOne updates an LU factorization as if a rank-one update had been applied to
// the original matrix A, storing the result into the receiver. That is, if in
// the original LU decomposition P * L * U = A, in the updated decomposition
// P * L' * U' = A + alpha * x * yᵀ.
// RankOne will panic if orig does not contain a factorization.
func (lu *LU) RankOne(orig *LU, alpha float64, x, y Vector) {
if !orig.isValid() {
panic(badLU)
}
// RankOne uses algorithm a1 on page 28 of "Multiple-Rank Updates to Matrix
// Factorizations for Nonlinear Analysis and Circuit Design" by Linzhong Deng.
// http://web.stanford.edu/group/SOL/dissertations/Linzhong-Deng-thesis.pdf
_, n := orig.lu.Dims()
if r, c := x.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if r, c := y.Dims(); r != n || c != 1 {
panic(ErrShape)
}
if orig != lu {
if lu.isZero() {
lu.swaps = useInt(lu.swaps, n)
lu.piv = useInt(lu.piv, n)
if lu.lu == nil {
lu.lu = NewDense(n, n, nil)
} else {
lu.lu.reuseAsNonZeroed(n, n)
}
} else if len(lu.swaps) != n {
panic(ErrShape)
}
copy(lu.swaps, orig.swaps)
lu.updatePivots(lu.swaps)
lu.lu.Copy(orig.lu)
}
xs := getFloat64s(n, false)
defer putFloat64s(xs)
ys := getFloat64s(n, false)
defer putFloat64s(ys)
for i := 0; i < n; i++ {
xs[i] = x.AtVec(i)
ys[i] = y.AtVec(i)
}
// Adjust for the pivoting in the LU factorization
for i, v := range lu.swaps {
xs[i], xs[v] = xs[v], xs[i]
}
lum := lu.lu.mat
omega := alpha
for j := 0; j < n; j++ {
ujj := lum.Data[j*lum.Stride+j]
ys[j] /= ujj
theta := 1 + xs[j]*ys[j]*omega
beta := omega * ys[j] / theta
gamma := omega * xs[j]
omega -= beta * gamma
lum.Data[j*lum.Stride+j] *= theta
for i := j + 1; i < n; i++ {
xs[i] -= lum.Data[i*lum.Stride+j] * xs[j]
tmp := ys[i]
ys[i] -= lum.Data[j*lum.Stride+i] * ys[j]
lum.Data[i*lum.Stride+j] += beta * xs[i]
lum.Data[j*lum.Stride+i] += gamma * tmp
}
}
lu.updateCond(-1, CondNorm)
}
// LTo extracts the lower triangular matrix from an LU factorization.
//
// If dst is empty, LTo will resize dst to be a lower-triangular n×n matrix.
// When dst is non-empty, LTo will panic if dst is not n×n or not Lower.
// LTo will also panic if the receiver does not contain a successful
// factorization.
func (lu *LU) LTo(dst *TriDense) *TriDense {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst.IsEmpty() {
dst.ReuseAsTri(n, Lower)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Lower {
panic(ErrTriangle)
}
}
// Extract the lower triangular elements.
for i := 1; i < n; i++ {
copy(dst.mat.Data[i*dst.mat.Stride:i*dst.mat.Stride+i], lu.lu.mat.Data[i*lu.lu.mat.Stride:i*lu.lu.mat.Stride+i])
}
// Set ones on the diagonal.
for i := 0; i < n; i++ {
dst.mat.Data[i*dst.mat.Stride+i] = 1
}
return dst
}
// UTo extracts the upper triangular matrix from an LU factorization.
//
// If dst is empty, UTo will resize dst to be an upper-triangular n×n matrix.
// When dst is non-empty, UTo will panic if dst is not n×n or not Upper.
// UTo will also panic if the receiver does not contain a successful
// factorization.
func (lu *LU) UTo(dst *TriDense) {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if dst.IsEmpty() {
dst.ReuseAsTri(n, Upper)
} else {
n2, kind := dst.Triangle()
if n != n2 {
panic(ErrShape)
}
if kind != Upper {
panic(ErrTriangle)
}
}
// Extract the upper triangular elements.
for i := 0; i < n; i++ {
copy(dst.mat.Data[i*dst.mat.Stride+i:i*dst.mat.Stride+n], lu.lu.mat.Data[i*lu.lu.mat.Stride+i:i*lu.lu.mat.Stride+n])
}
}
// SolveTo solves a system of linear equations
//
// A * X = B if trans == false
// Aᵀ * X = B if trans == true
//
// using the LU factorization of A stored in the receiver. The solution matrix X
// is stored into dst.
//
// If A is singular or near-singular a Condition error is returned. See the
// documentation for Condition for more information. SolveTo will panic if the
// receiver does not contain a factorization.
func (lu *LU) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
br, bc := b.Dims()
if br != n {
panic(ErrShape)
}
if !lu.ok {
return Condition(math.Inf(1))
}
dst.reuseAsNonZeroed(n, bc)
bU, _ := untranspose(b)
if dst == bU {
var restore func()
dst, restore = dst.isolatedWorkspace(bU)
defer restore()
} else if rm, ok := bU.(RawMatrixer); ok {
dst.checkOverlap(rm.RawMatrix())
}
dst.Copy(b)
t := blas.NoTrans
if trans {
t = blas.Trans
}
lapack64.Getrs(t, lu.lu.mat, dst.mat, lu.swaps)
if lu.cond > ConditionTolerance {
return Condition(lu.cond)
}
return nil
}
// SolveVecTo solves a system of linear equations
//
// A * x = b if trans == false
// Aᵀ * x = b if trans == true
//
// using the LU factorization of A stored in the receiver. The solution matrix x
// is stored into dst.
//
// If A is singular or near-singular a Condition error is returned. See the
// documentation for Condition for more information. SolveVecTo will panic if the
// receiver does not contain a factorization.
func (lu *LU) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lu.isValid() {
panic(badLU)
}
_, n := lu.lu.Dims()
if br, bc := b.Dims(); br != n || bc != 1 {
panic(ErrShape)
}
switch rv := b.(type) {
default:
dst.reuseAsNonZeroed(n)
return lu.SolveTo(dst.asDense(), trans, b)
case RawVectorer:
if dst != b {
dst.checkOverlap(rv.RawVector())
}
if !lu.ok {
return Condition(math.Inf(1))
}
dst.reuseAsNonZeroed(n)
var restore func()
if dst == b {
dst, restore = dst.isolatedWorkspace(b)
defer restore()
}
dst.CopyVec(b)
vMat := blas64.General{
Rows: n,
Cols: 1,
Stride: dst.mat.Inc,
Data: dst.mat.Data,
}
t := blas.NoTrans
if trans {
t = blas.Trans
}
lapack64.Getrs(t, lu.lu.mat, vMat, lu.swaps)
if lu.cond > ConditionTolerance {
return Condition(lu.cond)
}
return nil
}
}