blob: 3d20a8822feb1dff4bfad99b5cbcd30a0d59d634 [file] [log] [blame] [edit]
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package community
import (
"fmt"
"math"
"sort"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
"gonum.org/v1/gonum/graph/iterator"
)
// DirectedMultiplex is a directed multiplex graph.
type DirectedMultiplex interface {
Multiplex
// Layer returns the lth layer of the
// multiplex graph.
Layer(l int) graph.Directed
}
// qDirectedMultiplex returns the modularity Q score of the multiplex graph layers
// subdivided into the given communities at the given resolutions and weights. Q is
// returned as the vector of weighted Q scores for each layer of the multiplex graph.
// If communities is nil, the unclustered modularity score is returned.
// If weights is nil layers are equally weighted, otherwise the length of
// weights must equal the number of layers. If resolutions is nil, a resolution
// of 1.0 is used for all layers, otherwise either a single element slice may be used
// to specify a global resolution, or the length of resolutions must equal the number
// of layers. The resolution parameter is γ as defined in Reichardt and Bornholdt
// doi:10.1103/PhysRevE.74.016110.
// qUndirectedMultiplex will panic if the graph has any layer weight-scaled edge with
// negative edge weight.
//
// Q_{layer} = w_{layer} \sum_{ij} [ A_{layer}*_{ij} - (\gamma_{layer} k_i k_j)/2m ] \delta(c_i,c_j)
//
// Note that Q values for multiplex graphs are not scaled by the total layer edge weight.
func qDirectedMultiplex(g DirectedMultiplex, communities [][]graph.Node, weights, resolutions []float64) []float64 {
q := make([]float64, g.Depth())
nodes := graph.NodesOf(g.Nodes())
layerWeight := 1.0
layerResolution := 1.0
if len(resolutions) == 1 {
layerResolution = resolutions[0]
}
for l := 0; l < g.Depth(); l++ {
layer := g.Layer(l)
if weights != nil {
layerWeight = weights[l]
}
if layerWeight == 0 {
continue
}
if len(resolutions) > 1 {
layerResolution = resolutions[l]
}
var weight func(xid, yid int64) float64
if layerWeight < 0 {
weight = negativeWeightFuncFor(layer)
} else {
weight = positiveWeightFuncFor(layer)
}
// Calculate the total edge weight of the layer
// and the table of penetrating edge weight sums.
var m float64
k := make(map[int64]directedWeights, len(nodes))
for _, n := range nodes {
var wOut float64
u := n
uid := u.ID()
to := layer.From(uid)
for to.Next() {
wOut += weight(uid, to.Node().ID())
}
var wIn float64
v := n
vid := v.ID()
from := layer.To(vid)
for from.Next() {
wIn += weight(from.Node().ID(), vid)
}
id := n.ID()
w := weight(id, id)
m += w + wOut // We only need to count edges once.
k[n.ID()] = directedWeights{out: w + wOut, in: w + wIn}
}
if communities == nil {
var qLayer float64
for _, u := range nodes {
uid := u.ID()
kU := k[uid]
qLayer += weight(uid, uid) - layerResolution*kU.out*kU.in/m
}
q[l] = layerWeight * qLayer
continue
}
var qLayer float64
for _, c := range communities {
for _, u := range c {
uid := u.ID()
kU := k[uid]
for _, v := range c {
vid := v.ID()
kV := k[vid]
qLayer += weight(uid, vid) - layerResolution*kU.out*kV.in/m
}
}
}
q[l] = layerWeight * qLayer
}
return q
}
// DirectedLayers implements DirectedMultiplex.
type DirectedLayers []graph.Directed
// NewDirectedLayers returns a DirectedLayers using the provided layers
// ensuring there is a match between IDs for each layer.
func NewDirectedLayers(layers ...graph.Directed) (DirectedLayers, error) {
if len(layers) == 0 {
return nil, nil
}
base := make(set.Int64s)
nodes := layers[0].Nodes()
for nodes.Next() {
base.Add(nodes.Node().ID())
}
for i, l := range layers[1:] {
next := make(set.Int64s)
nodes := l.Nodes()
for nodes.Next() {
next.Add(nodes.Node().ID())
}
if !set.Int64sEqual(base, next) {
return nil, fmt.Errorf("community: layer ID mismatch between layers: %d", i+1)
}
}
return layers, nil
}
// Nodes returns the nodes of the receiver.
func (g DirectedLayers) Nodes() graph.Nodes {
if len(g) == 0 {
return nil
}
return g[0].Nodes()
}
// Depth returns the depth of the multiplex graph.
func (g DirectedLayers) Depth() int { return len(g) }
// Layer returns the lth layer of the multiplex graph.
func (g DirectedLayers) Layer(l int) graph.Directed { return g[l] }
// louvainDirectedMultiplex returns the hierarchical modularization of g at the given resolution
// using the Louvain algorithm. If all is true and g has negatively weighted layers, all
// communities will be searched during the modularization. If src is nil, rand.Intn is
// used as the random generator. louvainDirectedMultiplex will panic if g has any edge with
// edge weight that does not sign-match the layer weight.
//
// graph.Undirect may be used as a shim to allow modularization of directed graphs.
func louvainDirectedMultiplex(g DirectedMultiplex, weights, resolutions []float64, all bool, src rand.Source) *ReducedDirectedMultiplex {
if weights != nil && len(weights) != g.Depth() {
panic("community: weights vector length mismatch")
}
if resolutions != nil && len(resolutions) != 1 && len(resolutions) != g.Depth() {
panic("community: resolutions vector length mismatch")
}
// See louvain.tex for a detailed description
// of the algorithm used here.
c := reduceDirectedMultiplex(g, nil, weights)
rnd := rand.Intn
if src != nil {
rnd = rand.New(src).Intn
}
for {
l := newDirectedMultiplexLocalMover(c, c.communities, weights, resolutions, all)
if l == nil {
return c
}
if done := l.localMovingHeuristic(rnd); done {
return c
}
c = reduceDirectedMultiplex(c, l.communities, weights)
}
}
// ReducedDirectedMultiplex is a directed graph of communities derived from a
// parent graph by reduction.
type ReducedDirectedMultiplex struct {
// nodes is the set of nodes held
// by the graph. In a ReducedDirectedMultiplex
// the node ID is the index into
// nodes.
nodes []multiplexCommunity
layers []directedEdges
// communities is the community
// structure of the graph.
communities [][]graph.Node
parent *ReducedDirectedMultiplex
}
var (
_ DirectedMultiplex = (*ReducedDirectedMultiplex)(nil)
_ graph.WeightedDirected = (*directedLayerHandle)(nil)
)
// Nodes returns all the nodes in the graph.
func (g *ReducedDirectedMultiplex) Nodes() graph.Nodes {
nodes := make([]graph.Node, len(g.nodes))
for i := range g.nodes {
nodes[i] = node(i)
}
return iterator.NewOrderedNodes(nodes)
}
// Depth returns the number of layers in the multiplex graph.
func (g *ReducedDirectedMultiplex) Depth() int { return len(g.layers) }
// Layer returns the lth layer of the multiplex graph.
func (g *ReducedDirectedMultiplex) Layer(l int) graph.Directed {
return directedLayerHandle{multiplex: g, layer: l}
}
// Communities returns the community memberships of the nodes in the
// graph used to generate the reduced graph.
func (g *ReducedDirectedMultiplex) Communities() [][]graph.Node {
communities := make([][]graph.Node, len(g.communities))
if g.parent == nil {
for i, members := range g.communities {
comm := make([]graph.Node, len(members))
for j, n := range members {
nodes := g.nodes[n.ID()].nodes
if len(nodes) != 1 {
panic("community: unexpected number of nodes in base graph community")
}
comm[j] = nodes[0]
}
communities[i] = comm
}
return communities
}
sub := g.parent.Communities()
for i, members := range g.communities {
var comm []graph.Node
for _, n := range members {
comm = append(comm, sub[n.ID()]...)
}
communities[i] = comm
}
return communities
}
// Structure returns the community structure of the current level of
// the module clustering. The first index of the returned value
// corresponds to the index of the nodes in the next higher level if
// it exists. The returned value should not be mutated.
func (g *ReducedDirectedMultiplex) Structure() [][]graph.Node {
return g.communities
}
// Expanded returns the next lower level of the module clustering or nil
// if at the lowest level.
func (g *ReducedDirectedMultiplex) Expanded() ReducedMultiplex {
return g.parent
}
// reduceDirectedMultiplex returns a reduced graph constructed from g divided
// into the given communities. The communities value is mutated
// by the call to reduceDirectedMultiplex. If communities is nil and g is a
// ReducedDirectedMultiplex, it is returned unaltered.
func reduceDirectedMultiplex(g DirectedMultiplex, communities [][]graph.Node, weights []float64) *ReducedDirectedMultiplex {
if communities == nil {
if r, ok := g.(*ReducedDirectedMultiplex); ok {
return r
}
nodes := graph.NodesOf(g.Nodes())
// TODO(kortschak) This sort is necessary really only
// for testing. In practice we would not be using the
// community provided by the user for a Q calculation.
// Probably we should use a function to map the
// communities in the test sets to the remapped order.
sort.Sort(ordered.ByID(nodes))
communities = make([][]graph.Node, len(nodes))
for i := range nodes {
communities[i] = []graph.Node{node(i)}
}
r := ReducedDirectedMultiplex{
nodes: make([]multiplexCommunity, len(nodes)),
layers: make([]directedEdges, g.Depth()),
communities: communities,
}
communityOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
r.nodes[i] = multiplexCommunity{id: i, nodes: []graph.Node{n}, weights: make([]float64, depth(weights))}
communityOf[n.ID()] = i
}
for i := range r.layers {
r.layers[i] = directedEdges{
edgesFrom: make([][]int, len(nodes)),
edgesTo: make([][]int, len(nodes)),
weights: make(map[[2]int]float64),
}
}
w := 1.0
for l := 0; l < g.Depth(); l++ {
layer := g.Layer(l)
if weights != nil {
w = weights[l]
}
if w == 0 {
continue
}
var sign float64
var weight func(xid, yid int64) float64
if w < 0 {
sign, weight = -1, negativeWeightFuncFor(layer)
} else {
sign, weight = 1, positiveWeightFuncFor(layer)
}
for _, n := range nodes {
id := communityOf[n.ID()]
var out []int
u := n
uid := u.ID()
to := layer.From(uid)
for to.Next() {
vid := to.Node().ID()
vcid := communityOf[vid]
if vcid != id {
out = append(out, vcid)
}
r.layers[l].weights[[2]int{id, vcid}] = sign * weight(uid, vid)
}
r.layers[l].edgesFrom[id] = out
var in []int
v := n
vid := v.ID()
from := layer.To(vid)
for from.Next() {
uid := from.Node().ID()
ucid := communityOf[uid]
if ucid != id {
in = append(in, ucid)
}
r.layers[l].weights[[2]int{ucid, id}] = sign * weight(uid, vid)
}
r.layers[l].edgesTo[id] = in
}
}
return &r
}
// Remove zero length communities destructively.
var commNodes int
for i := 0; i < len(communities); {
comm := communities[i]
if len(comm) == 0 {
communities[i] = communities[len(communities)-1]
communities[len(communities)-1] = nil
communities = communities[:len(communities)-1]
} else {
commNodes += len(comm)
i++
}
}
r := ReducedDirectedMultiplex{
nodes: make([]multiplexCommunity, len(communities)),
layers: make([]directedEdges, g.Depth()),
}
communityOf := make(map[int64]int, commNodes)
for i, comm := range communities {
r.nodes[i] = multiplexCommunity{id: i, nodes: comm, weights: make([]float64, depth(weights))}
for _, n := range comm {
communityOf[n.ID()] = i
}
}
for i := range r.layers {
r.layers[i] = directedEdges{
edgesFrom: make([][]int, len(communities)),
edgesTo: make([][]int, len(communities)),
weights: make(map[[2]int]float64),
}
}
r.communities = make([][]graph.Node, len(communities))
for i := range r.communities {
r.communities[i] = []graph.Node{node(i)}
}
if g, ok := g.(*ReducedDirectedMultiplex); ok {
// Make sure we retain the truncated
// community structure.
g.communities = communities
r.parent = g
}
w := 1.0
for l := 0; l < g.Depth(); l++ {
layer := g.Layer(l)
if weights != nil {
w = weights[l]
}
if w == 0 {
continue
}
var sign float64
var weight func(xid, yid int64) float64
if w < 0 {
sign, weight = -1, negativeWeightFuncFor(layer)
} else {
sign, weight = 1, positiveWeightFuncFor(layer)
}
for id, comm := range communities {
var out, in []int
for _, n := range comm {
u := n
uid := u.ID()
for _, v := range comm {
r.nodes[id].weights[l] += sign * weight(uid, v.ID())
}
to := layer.From(uid)
for to.Next() {
vid := to.Node().ID()
vcid := communityOf[vid]
found := false
for _, e := range out {
if e == vcid {
found = true
break
}
}
if !found && vcid != id {
out = append(out, vcid)
}
// Add half weights because the other
// ends of edges are also counted.
r.layers[l].weights[[2]int{id, vcid}] += sign * weight(uid, vid) / 2
}
v := n
vid := v.ID()
from := layer.To(vid)
for from.Next() {
uid := from.Node().ID()
ucid := communityOf[uid]
found := false
for _, e := range in {
if e == ucid {
found = true
break
}
}
if !found && ucid != id {
in = append(in, ucid)
}
// Add half weights because the other
// ends of edges are also counted.
r.layers[l].weights[[2]int{ucid, id}] += sign * weight(uid, vid) / 2
}
}
r.layers[l].edgesFrom[id] = out
r.layers[l].edgesTo[id] = in
}
}
return &r
}
// directedLayerHandle is a handle to a multiplex graph layer.
type directedLayerHandle struct {
// multiplex is the complete
// multiplex graph.
multiplex *ReducedDirectedMultiplex
// layer is an index into the
// multiplex for the current
// layer.
layer int
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g directedLayerHandle) Node(id int64) graph.Node {
if g.has(id) {
return g.multiplex.nodes[id]
}
return nil
}
// has returns whether the node exists within the graph.
func (g directedLayerHandle) has(id int64) bool {
return 0 <= id && id < int64(len(g.multiplex.nodes))
}
// Nodes returns all the nodes in the graph.
func (g directedLayerHandle) Nodes() graph.Nodes {
nodes := make([]graph.Node, len(g.multiplex.nodes))
for i := range g.multiplex.nodes {
nodes[i] = node(i)
}
return iterator.NewOrderedNodes(nodes)
}
// From returns all nodes in g that can be reached directly from u.
func (g directedLayerHandle) From(uid int64) graph.Nodes {
out := g.multiplex.layers[g.layer].edgesFrom[uid]
nodes := make([]graph.Node, len(out))
for i, vid := range out {
nodes[i] = g.multiplex.nodes[vid]
}
return iterator.NewOrderedNodes(nodes)
}
// To returns all nodes in g that can reach directly to v.
func (g directedLayerHandle) To(vid int64) graph.Nodes {
in := g.multiplex.layers[g.layer].edgesTo[vid]
nodes := make([]graph.Node, len(in))
for i, uid := range in {
nodes[i] = g.multiplex.nodes[uid]
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g directedLayerHandle) HasEdgeBetween(xid, yid int64) bool {
if xid == yid {
return false
}
if xid == yid || !isValidID(xid) || !isValidID(yid) {
return false
}
_, ok := g.multiplex.layers[g.layer].weights[[2]int{int(xid), int(yid)}]
if ok {
return true
}
_, ok = g.multiplex.layers[g.layer].weights[[2]int{int(yid), int(xid)}]
return ok
}
// HasEdgeFromTo returns whether an edge exists from node u to v.
func (g directedLayerHandle) HasEdgeFromTo(uid, vid int64) bool {
if uid == vid || !isValidID(uid) || !isValidID(vid) {
return false
}
_, ok := g.multiplex.layers[g.layer].weights[[2]int{int(uid), int(vid)}]
return ok
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g directedLayerHandle) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdge(uid, vid)
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g directedLayerHandle) WeightedEdge(uid, vid int64) graph.WeightedEdge {
if uid == vid || !isValidID(uid) || !isValidID(vid) {
return nil
}
w, ok := g.multiplex.layers[g.layer].weights[[2]int{int(uid), int(vid)}]
if !ok {
return nil
}
return multiplexEdge{from: g.multiplex.nodes[uid], to: g.multiplex.nodes[vid], weight: w}
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node the internal node weight is returned. If there is no joining
// edge between the two nodes the weight value returned is zero. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g directedLayerHandle) Weight(xid, yid int64) (w float64, ok bool) {
if !isValidID(xid) || !isValidID(yid) {
return 0, false
}
if xid == yid {
return g.multiplex.nodes[xid].weights[g.layer], true
}
w, ok = g.multiplex.layers[g.layer].weights[[2]int{int(xid), int(yid)}]
return w, ok
}
// directedMultiplexLocalMover is a step in graph modularity optimization.
type directedMultiplexLocalMover struct {
g *ReducedDirectedMultiplex
// nodes is the set of working nodes.
nodes []graph.Node
// edgeWeightsOf is the weighted degree
// of each node indexed by ID.
edgeWeightsOf [][]directedWeights
// m is the total sum of
// edge weights in g.
m []float64
// weight is the weight function
// provided by g or a function
// that returns the Weight value
// of the non-nil edge between x
// and y.
weight []func(xid, yid int64) float64
// communities is the current
// division of g.
communities [][]graph.Node
// memberships is a mapping between
// node ID and community membership.
memberships []int
// resolution is the Reichardt and
// Bornholdt γ parameter as defined
// in doi:10.1103/PhysRevE.74.016110.
resolutions []float64
// weights is the layer weights for
// the modularisation.
weights []float64
// searchAll specifies whether the local
// mover should consider non-connected
// communities during the local moving
// heuristic.
searchAll bool
// moved indicates that a call to
// move has been made since the last
// call to shuffle.
moved bool
// changed indicates that a move
// has been made since the creation
// of the local mover.
changed bool
}
// newDirectedMultiplexLocalMover returns a new directedMultiplexLocalMover initialized with
// the graph g, a set of communities and a modularity resolution parameter. The
// node IDs of g must be contiguous in [0,n) where n is the number of nodes.
// If g has a zero edge weight sum, nil is returned.
func newDirectedMultiplexLocalMover(g *ReducedDirectedMultiplex, communities [][]graph.Node, weights, resolutions []float64, all bool) *directedMultiplexLocalMover {
nodes := graph.NodesOf(g.Nodes())
l := directedMultiplexLocalMover{
g: g,
nodes: nodes,
edgeWeightsOf: make([][]directedWeights, g.Depth()),
m: make([]float64, g.Depth()),
communities: communities,
memberships: make([]int, len(nodes)),
resolutions: resolutions,
weights: weights,
weight: make([]func(xid, yid int64) float64, g.Depth()),
}
// Calculate the total edge weight of the graph
// and degree weights for each node.
var zero int
for i := 0; i < g.Depth(); i++ {
l.edgeWeightsOf[i] = make([]directedWeights, len(nodes))
var weight func(xid, yid int64) float64
if weights != nil {
if weights[i] == 0 {
zero++
continue
}
if weights[i] < 0 {
weight = negativeWeightFuncFor(g.Layer(i))
l.searchAll = all
} else {
weight = positiveWeightFuncFor(g.Layer(i))
}
} else {
weight = positiveWeightFuncFor(g.Layer(i))
}
l.weight[i] = weight
layer := g.Layer(i)
for _, n := range l.nodes {
u := n
uid := u.ID()
var wOut float64
to := layer.From(uid)
for to.Next() {
wOut += weight(uid, to.Node().ID())
}
v := n
vid := v.ID()
var wIn float64
from := layer.To(vid)
for from.Next() {
wIn += weight(from.Node().ID(), vid)
}
id := n.ID()
w := weight(id, id)
l.edgeWeightsOf[i][uid] = directedWeights{out: w + wOut, in: w + wIn}
l.m[i] += w + wOut
}
if l.m[i] == 0 {
zero++
}
}
if zero == g.Depth() {
return nil
}
// Assign membership mappings.
for i, c := range communities {
for _, n := range c {
l.memberships[n.ID()] = i
}
}
return &l
}
// localMovingHeuristic performs the Louvain local moving heuristic until
// no further moves can be made. It returns a boolean indicating that the
// directedMultiplexLocalMover has not made any improvement to the community
// structure and so the Louvain algorithm is done.
func (l *directedMultiplexLocalMover) localMovingHeuristic(rnd func(int) int) (done bool) {
for {
l.shuffle(rnd)
for _, n := range l.nodes {
dQ, dst, src := l.deltaQ(n)
if dQ <= deltaQtol {
continue
}
l.move(dst, src)
}
if !l.moved {
return !l.changed
}
}
}
// shuffle performs a Fisher-Yates shuffle on the nodes held by the
// directedMultiplexLocalMover using the random source rnd which should return
// an integer in the range [0,n).
func (l *directedMultiplexLocalMover) shuffle(rnd func(n int) int) {
l.moved = false
for i := range l.nodes[:len(l.nodes)-1] {
j := i + rnd(len(l.nodes)-i)
l.nodes[i], l.nodes[j] = l.nodes[j], l.nodes[i]
}
}
// move moves the node at src to the community at dst.
func (l *directedMultiplexLocalMover) move(dst int, src commIdx) {
l.moved = true
l.changed = true
srcComm := l.communities[src.community]
n := srcComm[src.node]
l.memberships[n.ID()] = dst
l.communities[dst] = append(l.communities[dst], n)
srcComm[src.node], srcComm[len(srcComm)-1] = srcComm[len(srcComm)-1], nil
l.communities[src.community] = srcComm[:len(srcComm)-1]
}
// deltaQ returns the highest gain in modularity attainable by moving
// n from its current community to another connected community and
// the index of the chosen destination. The index into the
// directedMultiplexLocalMover's communities field is returned in src if n
// is in communities.
func (l *directedMultiplexLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, src commIdx) {
id := n.ID()
var iterator minTaker
if l.searchAll {
iterator = &dense{n: len(l.communities)}
} else {
// Find communities connected to n.
connected := make(set.Ints)
// The following for loop is equivalent to:
//
// for i := 0; i < l.g.Depth(); i++ {
// for _, v := range l.g.Layer(i).From(n) {
// connected.Add(l.memberships[v.ID()])
// }
// for _, v := range l.g.Layer(i).To(n) {
// connected.Add(l.memberships[v.ID()])
// }
// }
//
// This is done to avoid an allocation for
// each layer.
for _, layer := range l.g.layers {
for _, vid := range layer.edgesFrom[id] {
connected.Add(l.memberships[vid])
}
for _, vid := range layer.edgesTo[id] {
connected.Add(l.memberships[vid])
}
}
// Insert the node's own community.
connected.Add(l.memberships[id])
iterator = newSlice(connected)
}
// Calculate the highest modularity gain
// from moving into another community and
// keep the index of that community.
var dQremove float64
dQadd, dst, src := math.Inf(-1), -1, commIdx{-1, -1}
var i int
for iterator.TakeMin(&i) {
c := l.communities[i]
var removal bool
var _dQadd float64
for layer := 0; layer < l.g.Depth(); layer++ {
m := l.m[layer]
if m == 0 {
// Do not consider layers with zero sum edge weight.
continue
}
w := 1.0
if l.weights != nil {
w = l.weights[layer]
}
if w == 0 {
// Do not consider layers with zero weighting.
continue
}
var k_aC, sigma_totC directedWeights // C is a substitution for ^𝛼 or ^𝛽.
removal = false
for j, u := range c {
uid := u.ID()
if uid == id {
// Only mark and check src community on the first layer.
if layer == 0 {
if src.community != -1 {
panic("community: multiple sources")
}
src = commIdx{i, j}
}
removal = true
}
k_aC.in += l.weight[layer](id, uid)
k_aC.out += l.weight[layer](uid, id)
// sigma_totC could be kept for each community
// and updated for moves, changing the calculation
// of sigma_totC here from O(n_c) to O(1), but
// in practice the time savings do not appear
// to be compelling and do not make up for the
// increase in code complexity and space required.
w := l.edgeWeightsOf[layer][uid]
sigma_totC.in += w.in
sigma_totC.out += w.out
}
a_aa := l.weight[layer](id, id)
k_a := l.edgeWeightsOf[layer][id]
gamma := 1.0
if l.resolutions != nil {
if len(l.resolutions) == 1 {
gamma = l.resolutions[0]
} else {
gamma = l.resolutions[layer]
}
}
// See louvain.tex for a derivation of these equations.
// The weighting term, w, is described in V Traag,
// "Algorithms and dynamical models for communities and
// reputation in social networks", chapter 5.
// http://www.traag.net/wp/wp-content/papercite-data/pdf/traag_algorithms_2013.pdf
switch {
case removal:
// The community c was the current community,
// so calculate the change due to removal.
dQremove += w * ((k_aC.in /*^𝛼*/ - a_aa) + (k_aC.out /*^𝛼*/ - a_aa) -
gamma*(k_a.in*(sigma_totC.out /*^𝛼*/ -k_a.out)+k_a.out*(sigma_totC.in /*^𝛼*/ -k_a.in))/m)
default:
// Otherwise calculate the change due to an addition
// to c.
_dQadd += w * (k_aC.in /*^𝛽*/ + k_aC.out /*^𝛽*/ -
gamma*(k_a.in*sigma_totC.out /*^𝛽*/ +k_a.out*sigma_totC.in /*^𝛽*/)/m)
}
}
if !removal && _dQadd > dQadd {
dQadd = _dQadd
dst = i
}
}
return dQadd - dQremove, dst, src
}