| // Copyright ©2015 The gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package blas32 provides a simple interface to the float32 BLAS API. |
| package blas32 // import "gonum.org/v1/gonum/blas/blas32" |
| |
| import ( |
| "gonum.org/v1/gonum/blas" |
| "gonum.org/v1/gonum/blas/gonum" |
| ) |
| |
| var blas32 blas.Float32 = gonum.Implementation{} |
| |
| // Use sets the BLAS float32 implementation to be used by subsequent BLAS calls. |
| // The default implementation is native.Implementation. |
| func Use(b blas.Float32) { |
| blas32 = b |
| } |
| |
| // Implementation returns the current BLAS float32 implementation. |
| // |
| // Implementation allows direct calls to the current the BLAS float32 implementation |
| // giving finer control of parameters. |
| func Implementation() blas.Float32 { |
| return blas32 |
| } |
| |
| // Vector represents a vector with an associated element increment. |
| type Vector struct { |
| Inc int |
| Data []float32 |
| } |
| |
| // General represents a matrix using the conventional storage scheme. |
| type General struct { |
| Rows, Cols int |
| Stride int |
| Data []float32 |
| } |
| |
| // Band represents a band matrix using the band storage scheme. |
| type Band struct { |
| Rows, Cols int |
| KL, KU int |
| Stride int |
| Data []float32 |
| } |
| |
| // Triangular represents a triangular matrix using the conventional storage scheme. |
| type Triangular struct { |
| N int |
| Stride int |
| Data []float32 |
| Uplo blas.Uplo |
| Diag blas.Diag |
| } |
| |
| // TriangularBand represents a triangular matrix using the band storage scheme. |
| type TriangularBand struct { |
| N, K int |
| Stride int |
| Data []float32 |
| Uplo blas.Uplo |
| Diag blas.Diag |
| } |
| |
| // TriangularPacked represents a triangular matrix using the packed storage scheme. |
| type TriangularPacked struct { |
| N int |
| Data []float32 |
| Uplo blas.Uplo |
| Diag blas.Diag |
| } |
| |
| // Symmetric represents a symmetric matrix using the conventional storage scheme. |
| type Symmetric struct { |
| N int |
| Stride int |
| Data []float32 |
| Uplo blas.Uplo |
| } |
| |
| // SymmetricBand represents a symmetric matrix using the band storage scheme. |
| type SymmetricBand struct { |
| N, K int |
| Stride int |
| Data []float32 |
| Uplo blas.Uplo |
| } |
| |
| // SymmetricPacked represents a symmetric matrix using the packed storage scheme. |
| type SymmetricPacked struct { |
| N int |
| Data []float32 |
| Uplo blas.Uplo |
| } |
| |
| // Level 1 |
| |
| const negInc = "blas32: negative vector increment" |
| |
| // Dot computes the dot product of the two vectors: |
| // \sum_i x[i]*y[i]. |
| func Dot(n int, x, y Vector) float32 { |
| return blas32.Sdot(n, x.Data, x.Inc, y.Data, y.Inc) |
| } |
| |
| // DDot computes the dot product of the two vectors: |
| // \sum_i x[i]*y[i]. |
| func DDot(n int, x, y Vector) float64 { |
| return blas32.Dsdot(n, x.Data, x.Inc, y.Data, y.Inc) |
| } |
| |
| // SDDot computes the dot product of the two vectors adding a constant: |
| // alpha + \sum_i x[i]*y[i]. |
| func SDDot(n int, alpha float32, x, y Vector) float32 { |
| return blas32.Sdsdot(n, alpha, x.Data, x.Inc, y.Data, y.Inc) |
| } |
| |
| // Nrm2 computes the Euclidean norm of the vector x: |
| // sqrt(\sum_i x[i]*x[i]). |
| // |
| // Nrm2 will panic if the vector increment is negative. |
| func Nrm2(n int, x Vector) float32 { |
| if x.Inc < 0 { |
| panic(negInc) |
| } |
| return blas32.Snrm2(n, x.Data, x.Inc) |
| } |
| |
| // Asum computes the sum of the absolute values of the elements of x: |
| // \sum_i |x[i]|. |
| // |
| // Asum will panic if the vector increment is negative. |
| func Asum(n int, x Vector) float32 { |
| if x.Inc < 0 { |
| panic(negInc) |
| } |
| return blas32.Sasum(n, x.Data, x.Inc) |
| } |
| |
| // Iamax returns the index of an element of x with the largest absolute value. |
| // If there are multiple such indices the earliest is returned. |
| // Iamax returns -1 if n == 0. |
| // |
| // Iamax will panic if the vector increment is negative. |
| func Iamax(n int, x Vector) int { |
| if x.Inc < 0 { |
| panic(negInc) |
| } |
| return blas32.Isamax(n, x.Data, x.Inc) |
| } |
| |
| // Swap exchanges the elements of the two vectors: |
| // x[i], y[i] = y[i], x[i] for all i. |
| func Swap(n int, x, y Vector) { |
| blas32.Sswap(n, x.Data, x.Inc, y.Data, y.Inc) |
| } |
| |
| // Copy copies the elements of x into the elements of y: |
| // y[i] = x[i] for all i. |
| func Copy(n int, x, y Vector) { |
| blas32.Scopy(n, x.Data, x.Inc, y.Data, y.Inc) |
| } |
| |
| // Axpy adds x scaled by alpha to y: |
| // y[i] += alpha*x[i] for all i. |
| func Axpy(n int, alpha float32, x, y Vector) { |
| blas32.Saxpy(n, alpha, x.Data, x.Inc, y.Data, y.Inc) |
| } |
| |
| // Rotg computes the parameters of a Givens plane rotation so that |
| // ⎡ c s⎤ ⎡a⎤ ⎡r⎤ |
| // ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦ |
| // where a and b are the Cartesian coordinates of a given point. |
| // c, s, and r are defined as |
| // r = ±Sqrt(a^2 + b^2), |
| // c = a/r, the cosine of the rotation angle, |
| // s = a/r, the sine of the rotation angle, |
| // and z is defined such that |
| // if |a| > |b|, z = s, |
| // otherwise if c != 0, z = 1/c, |
| // otherwise z = 1. |
| func Rotg(a, b float32) (c, s, r, z float32) { |
| return blas32.Srotg(a, b) |
| } |
| |
| // Rotmg computes the modified Givens rotation. See |
| // http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html |
| // for more details. |
| func Rotmg(d1, d2, b1, b2 float32) (p blas.SrotmParams, rd1, rd2, rb1 float32) { |
| return blas32.Srotmg(d1, d2, b1, b2) |
| } |
| |
| // Rot applies a plane transformation to n points represented by the vectors x |
| // and y: |
| // x[i] = c*x[i] + s*y[i], |
| // y[i] = -s*x[i] + c*y[i], for all i. |
| func Rot(n int, x, y Vector, c, s float32) { |
| blas32.Srot(n, x.Data, x.Inc, y.Data, y.Inc, c, s) |
| } |
| |
| // Rotm applies the modified Givens rotation to n points represented by the |
| // vectors x and y. |
| func Rotm(n int, x, y Vector, p blas.SrotmParams) { |
| blas32.Srotm(n, x.Data, x.Inc, y.Data, y.Inc, p) |
| } |
| |
| // Scal scales the vector x by alpha: |
| // x[i] *= alpha for all i. |
| // |
| // Scal will panic if the vector increment is negative. |
| func Scal(n int, alpha float32, x Vector) { |
| if x.Inc < 0 { |
| panic(negInc) |
| } |
| blas32.Sscal(n, alpha, x.Data, x.Inc) |
| } |
| |
| // Level 2 |
| |
| // Gemv computes |
| // y = alpha * A * x + beta * y, if t == blas.NoTrans, |
| // y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans, |
| // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars. |
| func Gemv(t blas.Transpose, alpha float32, a General, x Vector, beta float32, y Vector) { |
| blas32.Sgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc) |
| } |
| |
| // Gbmv computes |
| // y = alpha * A * x + beta * y, if t == blas.NoTrans, |
| // y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans, |
| // where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars. |
| func Gbmv(t blas.Transpose, alpha float32, a Band, x Vector, beta float32, y Vector) { |
| blas32.Sgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc) |
| } |
| |
| // Trmv computes |
| // x = A * x, if t == blas.NoTrans, |
| // x = A^T * x, if t == blas.Trans or blas.ConjTrans, |
| // where A is an n×n triangular matrix, and x is a vector. |
| func Trmv(t blas.Transpose, a Triangular, x Vector) { |
| blas32.Strmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc) |
| } |
| |
| // Tbmv computes |
| // x = A * x, if t == blas.NoTrans, |
| // x = A^T * x, if t == blas.Trans or blas.ConjTrans, |
| // where A is an n×n triangular band matrix, and x is a vector. |
| func Tbmv(t blas.Transpose, a TriangularBand, x Vector) { |
| blas32.Stbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc) |
| } |
| |
| // Tpmv computes |
| // x = A * x, if t == blas.NoTrans, |
| // x = A^T * x, if t == blas.Trans or blas.ConjTrans, |
| // where A is an n×n triangular matrix in packed format, and x is a vector. |
| func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) { |
| blas32.Stpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc) |
| } |
| |
| // Trsv solves |
| // A * x = b, if t == blas.NoTrans, |
| // A^T * x = b, if t == blas.Trans or blas.ConjTrans, |
| // where A is an n×n triangular matrix, and x and b are vectors. |
| // |
| // At entry to the function, x contains the values of b, and the result is |
| // stored in-place into x. |
| // |
| // No test for singularity or near-singularity is included in this |
| // routine. Such tests must be performed before calling this routine. |
| func Trsv(t blas.Transpose, a Triangular, x Vector) { |
| blas32.Strsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc) |
| } |
| |
| // Tbsv solves |
| // A * x = b, if t == blas.NoTrans, |
| // A^T * x = b, if t == blas.Trans or blas.ConjTrans, |
| // where A is an n×n triangular band matrix, and x and b are vectors. |
| // |
| // At entry to the function, x contains the values of b, and the result is |
| // stored in place into x. |
| // |
| // No test for singularity or near-singularity is included in this |
| // routine. Such tests must be performed before calling this routine. |
| func Tbsv(t blas.Transpose, a TriangularBand, x Vector) { |
| blas32.Stbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc) |
| } |
| |
| // Tpsv solves |
| // A * x = b, if t == blas.NoTrans, |
| // A^T * x = b, if t == blas.Trans or blas.ConjTrans, |
| // where A is an n×n triangular matrix in packed format, and x and b are |
| // vectors. |
| // |
| // At entry to the function, x contains the values of b, and the result is |
| // stored in place into x. |
| // |
| // No test for singularity or near-singularity is included in this |
| // routine. Such tests must be performed before calling this routine. |
| func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) { |
| blas32.Stpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc) |
| } |
| |
| // Symv computes |
| // y = alpha * A * x + beta * y, |
| // where A is an n×n symmetric matrix, x and y are vectors, and alpha and |
| // beta are scalars. |
| func Symv(alpha float32, a Symmetric, x Vector, beta float32, y Vector) { |
| blas32.Ssymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc) |
| } |
| |
| // Sbmv performs |
| // y = alpha * A * x + beta * y, |
| // where A is an n×n symmetric band matrix, x and y are vectors, and alpha |
| // and beta are scalars. |
| func Sbmv(alpha float32, a SymmetricBand, x Vector, beta float32, y Vector) { |
| blas32.Ssbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc) |
| } |
| |
| // Spmv performs |
| // y = alpha * A * x + beta * y, |
| // where A is an n×n symmetric matrix in packed format, x and y are vectors, |
| // and alpha and beta are scalars. |
| func Spmv(alpha float32, a SymmetricPacked, x Vector, beta float32, y Vector) { |
| blas32.Sspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc) |
| } |
| |
| // Ger performs a rank-1 update |
| // A += alpha * x * y^T, |
| // where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar. |
| func Ger(alpha float32, x, y Vector, a General) { |
| blas32.Sger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride) |
| } |
| |
| // Syr performs a rank-1 update |
| // A += alpha * x * x^T, |
| // where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar. |
| func Syr(alpha float32, x Vector, a Symmetric) { |
| blas32.Ssyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride) |
| } |
| |
| // Spr performs the rank-1 update |
| // A += alpha * x * x^T, |
| // where A is an n×n symmetric matrix in packed format, x is a vector, and |
| // alpha is a scalar. |
| func Spr(alpha float32, x Vector, a SymmetricPacked) { |
| blas32.Sspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data) |
| } |
| |
| // Syr2 performs a rank-2 update |
| // A += alpha * x * y^T + alpha * y * x^T, |
| // where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar. |
| func Syr2(alpha float32, x, y Vector, a Symmetric) { |
| blas32.Ssyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride) |
| } |
| |
| // Spr2 performs a rank-2 update |
| // A += alpha * x * y^T + alpha * y * x^T, |
| // where A is an n×n symmetric matrix in packed format, x and y are vectors, |
| // and alpha is a scalar. |
| func Spr2(alpha float32, x, y Vector, a SymmetricPacked) { |
| blas32.Sspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data) |
| } |
| |
| // Level 3 |
| |
| // Gemm computes |
| // C = alpha * A * B + beta * C, |
| // where A, B, and C are dense matrices, and alpha and beta are scalars. |
| // tA and tB specify whether A or B are transposed. |
| func Gemm(tA, tB blas.Transpose, alpha float32, a, b General, beta float32, c General) { |
| var m, n, k int |
| if tA == blas.NoTrans { |
| m, k = a.Rows, a.Cols |
| } else { |
| m, k = a.Cols, a.Rows |
| } |
| if tB == blas.NoTrans { |
| n = b.Cols |
| } else { |
| n = b.Rows |
| } |
| blas32.Sgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride) |
| } |
| |
| // Symm performs |
| // C = alpha * A * B + beta * C, if s == blas.Left, |
| // C = alpha * B * A + beta * C, if s == blas.Right, |
| // where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and |
| // alpha is a scalar. |
| func Symm(s blas.Side, alpha float32, a Symmetric, b General, beta float32, c General) { |
| var m, n int |
| if s == blas.Left { |
| m, n = a.N, b.Cols |
| } else { |
| m, n = b.Rows, a.N |
| } |
| blas32.Ssymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride) |
| } |
| |
| // Syrk performs a symmetric rank-k update |
| // C = alpha * A * A^T + beta * C, if t == blas.NoTrans, |
| // C = alpha * A^T * A + beta * C, if t == blas.Trans or blas.ConjTrans, |
| // where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and |
| // a k×n matrix otherwise, and alpha and beta are scalars. |
| func Syrk(t blas.Transpose, alpha float32, a General, beta float32, c Symmetric) { |
| var n, k int |
| if t == blas.NoTrans { |
| n, k = a.Rows, a.Cols |
| } else { |
| n, k = a.Cols, a.Rows |
| } |
| blas32.Ssyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride) |
| } |
| |
| // Syr2k performs a symmetric rank-2k update |
| // C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans, |
| // C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans or blas.ConjTrans, |
| // where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans |
| // and k×n matrices otherwise, and alpha and beta are scalars. |
| func Syr2k(t blas.Transpose, alpha float32, a, b General, beta float32, c Symmetric) { |
| var n, k int |
| if t == blas.NoTrans { |
| n, k = a.Rows, a.Cols |
| } else { |
| n, k = a.Cols, a.Rows |
| } |
| blas32.Ssyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride) |
| } |
| |
| // Trmm performs |
| // B = alpha * A * B, if tA == blas.NoTrans and s == blas.Left, |
| // B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left, |
| // B = alpha * B * A, if tA == blas.NoTrans and s == blas.Right, |
| // B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right, |
| // where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is |
| // a scalar. |
| func Trmm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General) { |
| blas32.Strmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride) |
| } |
| |
| // Trsm solves |
| // A * X = alpha * B, if tA == blas.NoTrans and s == blas.Left, |
| // A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left, |
| // X * A = alpha * B, if tA == blas.NoTrans and s == blas.Right, |
| // X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right, |
| // where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and |
| // alpha is a scalar. |
| // |
| // At entry to the function, X contains the values of B, and the result is |
| // stored in-place into X. |
| // |
| // No check is made that A is invertible. |
| func Trsm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General) { |
| blas32.Strsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride) |
| } |