blob: 605a3ba18f4c2a14e6f10449cbe3bf8729bb2441 [file] [log] [blame]
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/spatial/r1"
)
func TestBhattacharyyaNormal(t *testing.T) {
for cas, test := range []struct {
am, bm []float64
ac, bc *mat.SymDense
samples int
tol float64
}{
{
am: []float64{2, 3},
ac: mat.NewSymDense(2, []float64{3, -1, -1, 2}),
bm: []float64{-1, 1},
bc: mat.NewSymDense(2, []float64{1.5, 0.2, 0.2, 0.9}),
samples: 100000,
tol: 3e-1,
},
} {
rnd := rand.New(rand.NewSource(1))
a, ok := NewNormal(test.am, test.ac, rnd)
if !ok {
panic("bad test")
}
b, ok := NewNormal(test.bm, test.bc, rnd)
if !ok {
panic("bad test")
}
want := bhattacharyyaSample(a.Dim(), test.samples, a, b)
got := Bhattacharyya{}.DistNormal(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Bhattacharyya mismatch, case %d: got %v, want %v", cas, got, want)
}
// Bhattacharyya should by symmetric
got2 := Bhattacharyya{}.DistNormal(b, a)
if math.Abs(got-got2) > 1e-14 {
t.Errorf("Bhattacharyya distance not symmetric")
}
}
}
func TestBhattacharyyaUniform(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for cas, test := range []struct {
a, b *Uniform
samples int
tol float64
}{
{
a: NewUniform([]r1.Interval{{Min: -3, Max: 2}, {Min: -5, Max: 8}}, rnd),
b: NewUniform([]r1.Interval{{Min: -4, Max: 1}, {Min: -7, Max: 10}}, rnd),
samples: 100000,
tol: 1e-2,
},
{
a: NewUniform([]r1.Interval{{Min: -3, Max: 2}, {Min: -5, Max: 8}}, rnd),
b: NewUniform([]r1.Interval{{Min: -5, Max: -4}, {Min: -7, Max: 10}}, rnd),
samples: 100000,
tol: 1e-2,
},
} {
a, b := test.a, test.b
want := bhattacharyyaSample(a.Dim(), test.samples, a, b)
got := Bhattacharyya{}.DistUniform(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Bhattacharyya mismatch, case %d: got %v, want %v", cas, got, want)
}
// Bhattacharyya should by symmetric
got2 := Bhattacharyya{}.DistUniform(b, a)
if math.Abs(got-got2) > 1e-14 {
t.Errorf("Bhattacharyya distance not symmetric")
}
}
}
// bhattacharyyaSample finds an estimate of the Bhattacharyya coefficient through
// sampling.
func bhattacharyyaSample(dim, samples int, l RandLogProber, r LogProber) float64 {
lBhatt := make([]float64, samples)
x := make([]float64, dim)
for i := 0; i < samples; i++ {
// Do importance sampling over a: \int sqrt(a*b)/a * a dx
l.Rand(x)
pa := l.LogProb(x)
pb := r.LogProb(x)
lBhatt[i] = 0.5*pb - 0.5*pa
}
logBc := floats.LogSumExp(lBhatt) - math.Log(float64(samples))
return -logBc
}
func TestCrossEntropyNormal(t *testing.T) {
for cas, test := range []struct {
am, bm []float64
ac, bc *mat.SymDense
samples int
tol float64
}{
{
am: []float64{2, 3},
ac: mat.NewSymDense(2, []float64{3, -1, -1, 2}),
bm: []float64{-1, 1},
bc: mat.NewSymDense(2, []float64{1.5, 0.2, 0.2, 0.9}),
samples: 100000,
tol: 1e-2,
},
} {
rnd := rand.New(rand.NewSource(1))
a, ok := NewNormal(test.am, test.ac, rnd)
if !ok {
panic("bad test")
}
b, ok := NewNormal(test.bm, test.bc, rnd)
if !ok {
panic("bad test")
}
var ce float64
x := make([]float64, a.Dim())
for i := 0; i < test.samples; i++ {
a.Rand(x)
ce -= b.LogProb(x)
}
ce /= float64(test.samples)
got := CrossEntropy{}.DistNormal(a, b)
if !scalar.EqualWithinAbsOrRel(ce, got, test.tol, test.tol) {
t.Errorf("CrossEntropy mismatch, case %d: got %v, want %v", cas, got, ce)
}
}
}
func TestHellingerNormal(t *testing.T) {
for cas, test := range []struct {
am, bm []float64
ac, bc *mat.SymDense
samples int
tol float64
}{
{
am: []float64{2, 3},
ac: mat.NewSymDense(2, []float64{3, -1, -1, 2}),
bm: []float64{-1, 1},
bc: mat.NewSymDense(2, []float64{1.5, 0.2, 0.2, 0.9}),
samples: 100000,
tol: 5e-1,
},
} {
rnd := rand.New(rand.NewSource(1))
a, ok := NewNormal(test.am, test.ac, rnd)
if !ok {
panic("bad test")
}
b, ok := NewNormal(test.bm, test.bc, rnd)
if !ok {
panic("bad test")
}
lAitchEDoubleHockeySticks := make([]float64, test.samples)
x := make([]float64, a.Dim())
for i := 0; i < test.samples; i++ {
// Do importance sampling over a: \int (\sqrt(a)-\sqrt(b))^2/a * a dx
a.Rand(x)
pa := a.LogProb(x)
pb := b.LogProb(x)
d := math.Exp(0.5*pa) - math.Exp(0.5*pb)
d = d * d
lAitchEDoubleHockeySticks[i] = math.Log(d) - pa
}
want := math.Sqrt(0.5 * math.Exp(floats.LogSumExp(lAitchEDoubleHockeySticks)-math.Log(float64(test.samples))))
got := Hellinger{}.DistNormal(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Hellinger mismatch, case %d: got %v, want %v", cas, got, want)
}
}
}
func TestKullbackLeiblerDirichlet(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for cas, test := range []struct {
a, b *Dirichlet
samples int
tol float64
}{
{
a: NewDirichlet([]float64{2, 3, 4}, rnd),
b: NewDirichlet([]float64{4, 2, 1.1}, rnd),
samples: 100000,
tol: 1e-2,
},
{
a: NewDirichlet([]float64{2, 3, 4, 0.1, 8}, rnd),
b: NewDirichlet([]float64{2, 2, 6, 0.5, 9}, rnd),
samples: 100000,
tol: 1e-2,
},
} {
a, b := test.a, test.b
want := klSample(a.Dim(), test.samples, a, b)
got := KullbackLeibler{}.DistDirichlet(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Kullback-Leibler mismatch, case %d: got %v, want %v", cas, got, want)
}
}
}
func TestKullbackLeiblerNormal(t *testing.T) {
for cas, test := range []struct {
am, bm []float64
ac, bc *mat.SymDense
samples int
tol float64
}{
{
am: []float64{2, 3},
ac: mat.NewSymDense(2, []float64{3, -1, -1, 2}),
bm: []float64{-1, 1},
bc: mat.NewSymDense(2, []float64{1.5, 0.2, 0.2, 0.9}),
samples: 10000,
tol: 1e-2,
},
} {
rnd := rand.New(rand.NewSource(1))
a, ok := NewNormal(test.am, test.ac, rnd)
if !ok {
panic("bad test")
}
b, ok := NewNormal(test.bm, test.bc, rnd)
if !ok {
panic("bad test")
}
want := klSample(a.Dim(), test.samples, a, b)
got := KullbackLeibler{}.DistNormal(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Case %d, KL mismatch: got %v, want %v", cas, got, want)
}
}
}
func TestKullbackLeiblerUniform(t *testing.T) {
rnd := rand.New(rand.NewSource(1))
for cas, test := range []struct {
a, b *Uniform
samples int
tol float64
}{
{
a: NewUniform([]r1.Interval{{Min: -5, Max: 2}, {Min: -7, Max: 12}}, rnd),
b: NewUniform([]r1.Interval{{Min: -4, Max: 1}, {Min: -7, Max: 10}}, rnd),
samples: 100000,
tol: 1e-2,
},
{
a: NewUniform([]r1.Interval{{Min: -5, Max: 2}, {Min: -7, Max: 12}}, rnd),
b: NewUniform([]r1.Interval{{Min: -9, Max: -6}, {Min: -7, Max: 10}}, rnd),
samples: 100000,
tol: 1e-2,
},
} {
a, b := test.a, test.b
want := klSample(a.Dim(), test.samples, a, b)
got := KullbackLeibler{}.DistUniform(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Kullback-Leibler mismatch, case %d: got %v, want %v", cas, got, want)
}
}
}
// klSample finds an estimate of the Kullback-Leibler divergence through sampling.
func klSample(dim, samples int, l RandLogProber, r LogProber) float64 {
var klmc float64
x := make([]float64, dim)
for i := 0; i < samples; i++ {
l.Rand(x)
pa := l.LogProb(x)
pb := r.LogProb(x)
klmc += pa - pb
}
return klmc / float64(samples)
}
func TestRenyiNormal(t *testing.T) {
for cas, test := range []struct {
am, bm []float64
ac, bc *mat.SymDense
alpha float64
samples int
tol float64
}{
{
am: []float64{2, 3},
ac: mat.NewSymDense(2, []float64{3, -1, -1, 2}),
bm: []float64{-1, 1},
bc: mat.NewSymDense(2, []float64{1.5, 0.2, 0.2, 0.9}),
alpha: 0.3,
samples: 10000,
tol: 3e-1,
},
} {
rnd := rand.New(rand.NewSource(1))
a, ok := NewNormal(test.am, test.ac, rnd)
if !ok {
panic("bad test")
}
b, ok := NewNormal(test.bm, test.bc, rnd)
if !ok {
panic("bad test")
}
want := renyiSample(a.Dim(), test.samples, test.alpha, a, b)
got := Renyi{Alpha: test.alpha}.DistNormal(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, test.tol, test.tol) {
t.Errorf("Case %d: Renyi sampling mismatch: got %v, want %v", cas, got, want)
}
// Compare with Bhattacharyya.
want = 2 * Bhattacharyya{}.DistNormal(a, b)
got = Renyi{Alpha: 0.5}.DistNormal(a, b)
if !scalar.EqualWithinAbsOrRel(want, got, 1e-10, 1e-10) {
t.Errorf("Case %d: Renyi mismatch with Bhattacharyya: got %v, want %v", cas, got, want)
}
// Compare with KL in both directions.
want = KullbackLeibler{}.DistNormal(a, b)
got = Renyi{Alpha: 0.9999999}.DistNormal(a, b) // very close to 1 but not equal to 1.
if !scalar.EqualWithinAbsOrRel(want, got, 1e-6, 1e-6) {
t.Errorf("Case %d: Renyi mismatch with KL(a||b): got %v, want %v", cas, got, want)
}
want = KullbackLeibler{}.DistNormal(b, a)
got = Renyi{Alpha: 0.9999999}.DistNormal(b, a) // very close to 1 but not equal to 1.
if !scalar.EqualWithinAbsOrRel(want, got, 1e-6, 1e-6) {
t.Errorf("Case %d: Renyi mismatch with KL(b||a): got %v, want %v", cas, got, want)
}
}
}
// renyiSample finds an estimate of the Rényi divergence through sampling.
// Note that this sampling procedure only works if l has broader support than r.
func renyiSample(dim, samples int, alpha float64, l RandLogProber, r LogProber) float64 {
rmcs := make([]float64, samples)
x := make([]float64, dim)
for i := 0; i < samples; i++ {
l.Rand(x)
pa := l.LogProb(x)
pb := r.LogProb(x)
rmcs[i] = (alpha-1)*pa + (1-alpha)*pb
}
return 1 / (alpha - 1) * (floats.LogSumExp(rmcs) - math.Log(float64(samples)))
}