blob: 1bcfe1a396679175fb55a42a40042e64b80b5bc8 [file] [log] [blame]
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package kdtree
import (
"container/heap"
"fmt"
"math"
"sort"
)
// Interface is the set of methods required for construction of efficiently
// searchable k-d trees. A k-d tree may be constructed without using the
// Interface type, but it is likely to have reduced search performance.
type Interface interface {
// Index returns the ith element of the list of points.
Index(i int) Comparable
// Len returns the length of the list.
Len() int
// Pivot partitions the list based on the dimension specified.
Pivot(Dim) int
// Slice returns a slice of the list using zero-based half
// open indexing equivalent to built-in slice indexing.
Slice(start, end int) Interface
}
// Bounder returns a bounding volume containing the list of points. Bounds may return nil.
type Bounder interface {
Bounds() *Bounding
}
type bounder interface {
Interface
Bounder
}
// Dim is an index into a point's coordinates.
type Dim int
// Comparable is the element interface for values stored in a k-d tree.
type Comparable interface {
// Compare returns the signed distance of a from the plane passing through
// b and perpendicular to the dimension d.
//
// Given c = a.Compare(b, d):
// c = a_d - b_d
//
Compare(Comparable, Dim) float64
// Dims returns the number of dimensions described in the Comparable.
Dims() int
// Distance returns the squared Euclidean distance between the receiver and
// the parameter.
Distance(Comparable) float64
}
// Extender is a Comparable that can increase a bounding volume to include the
// point represented by the Comparable.
type Extender interface {
Comparable
// Extend returns a bounding box that has been extended to include the
// receiver. Extend may return nil.
Extend(*Bounding) *Bounding
}
// Bounding represents a volume bounding box.
type Bounding struct {
Min, Max Comparable
}
// Contains returns whether c is within the volume of the Bounding. A nil Bounding
// returns true.
func (b *Bounding) Contains(c Comparable) bool {
if b == nil {
return true
}
for d := Dim(0); d < Dim(c.Dims()); d++ {
if c.Compare(b.Min, d) < 0 || 0 < c.Compare(b.Max, d) {
return false
}
}
return true
}
// Node holds a single point value in a k-d tree.
type Node struct {
Point Comparable
Plane Dim
Left, Right *Node
*Bounding
}
func (n *Node) String() string {
if n == nil {
return "<nil>"
}
return fmt.Sprintf("%.3f %d", n.Point, n.Plane)
}
// Tree implements a k-d tree creation and nearest neighbor search.
type Tree struct {
Root *Node
Count int
}
// New returns a k-d tree constructed from the values in p. If p is a Bounder and
// bounding is true, bounds are determined for each node.
// The ordering of elements in p may be altered after New returns.
func New(p Interface, bounding bool) *Tree {
if p, ok := p.(bounder); ok && bounding {
return &Tree{
Root: buildBounded(p, 0, bounding),
Count: p.Len(),
}
}
return &Tree{
Root: build(p, 0),
Count: p.Len(),
}
}
func build(p Interface, plane Dim) *Node {
if p.Len() == 0 {
return nil
}
piv := p.Pivot(plane)
d := p.Index(piv)
np := (plane + 1) % Dim(d.Dims())
return &Node{
Point: d,
Plane: plane,
Left: build(p.Slice(0, piv), np),
Right: build(p.Slice(piv+1, p.Len()), np),
Bounding: nil,
}
}
func buildBounded(p bounder, plane Dim, bounding bool) *Node {
if p.Len() == 0 {
return nil
}
piv := p.Pivot(plane)
d := p.Index(piv)
np := (plane + 1) % Dim(d.Dims())
b := p.Bounds()
return &Node{
Point: d,
Plane: plane,
Left: buildBounded(p.Slice(0, piv).(bounder), np, bounding),
Right: buildBounded(p.Slice(piv+1, p.Len()).(bounder), np, bounding),
Bounding: b,
}
}
// Insert adds a point to the tree, updating the bounding volumes if bounding is
// true, and the tree is empty or the tree already has bounding volumes stored,
// and c is an Extender. No rebalancing of the tree is performed.
func (t *Tree) Insert(c Comparable, bounding bool) {
t.Count++
if t.Root != nil {
bounding = t.Root.Bounding != nil
}
if c, ok := c.(Extender); ok && bounding {
t.Root = t.Root.insertBounded(c, 0, bounding)
return
} else if !ok && t.Root != nil {
// If we are not rebounding, mark the tree as non-bounded.
t.Root.Bounding = nil
}
t.Root = t.Root.insert(c, 0)
}
func (n *Node) insert(c Comparable, d Dim) *Node {
if n == nil {
return &Node{
Point: c,
Plane: d,
Bounding: nil,
}
}
d = (n.Plane + 1) % Dim(c.Dims())
if c.Compare(n.Point, n.Plane) <= 0 {
n.Left = n.Left.insert(c, d)
} else {
n.Right = n.Right.insert(c, d)
}
return n
}
func (n *Node) insertBounded(c Extender, d Dim, bounding bool) *Node {
if n == nil {
var b *Bounding
if bounding {
b = c.Extend(b)
}
return &Node{
Point: c,
Plane: d,
Bounding: b,
}
}
if bounding {
n.Bounding = c.Extend(n.Bounding)
}
d = (n.Plane + 1) % Dim(c.Dims())
if c.Compare(n.Point, n.Plane) <= 0 {
n.Left = n.Left.insertBounded(c, d, bounding)
} else {
n.Right = n.Right.insertBounded(c, d, bounding)
}
return n
}
// Len returns the number of elements in the tree.
func (t *Tree) Len() int { return t.Count }
// Contains returns whether a Comparable is in the bounds of the tree. If no bounding has
// been constructed Contains returns true.
func (t *Tree) Contains(c Comparable) bool {
if t.Root.Bounding == nil {
return true
}
return t.Root.Contains(c)
}
var inf = math.Inf(1)
// Nearest returns the nearest value to the query and the distance between them.
func (t *Tree) Nearest(q Comparable) (Comparable, float64) {
if t.Root == nil {
return nil, inf
}
n, dist := t.Root.search(q, inf)
if n == nil {
return nil, inf
}
return n.Point, dist
}
func (n *Node) search(q Comparable, dist float64) (*Node, float64) {
if n == nil {
return nil, inf
}
c := q.Compare(n.Point, n.Plane)
dist = math.Min(dist, q.Distance(n.Point))
bn := n
if c <= 0 {
ln, ld := n.Left.search(q, dist)
if ld < dist {
bn, dist = ln, ld
}
if c*c < dist {
rn, rd := n.Right.search(q, dist)
if rd < dist {
bn, dist = rn, rd
}
}
return bn, dist
}
rn, rd := n.Right.search(q, dist)
if rd < dist {
bn, dist = rn, rd
}
if c*c < dist {
ln, ld := n.Left.search(q, dist)
if ld < dist {
bn, dist = ln, ld
}
}
return bn, dist
}
// ComparableDist holds a Comparable and a distance to a specific query. A nil Comparable
// is used to mark the end of the heap, so clients should not store nil values except for
// this purpose.
type ComparableDist struct {
Comparable Comparable
Dist float64
}
// Heap is a max heap sorted on Dist.
type Heap []ComparableDist
func (h *Heap) Max() ComparableDist { return (*h)[0] }
func (h *Heap) Len() int { return len(*h) }
func (h *Heap) Less(i, j int) bool { return (*h)[i].Comparable == nil || (*h)[i].Dist > (*h)[j].Dist }
func (h *Heap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] }
func (h *Heap) Push(x interface{}) { (*h) = append(*h, x.(ComparableDist)) }
func (h *Heap) Pop() (i interface{}) { i, *h = (*h)[len(*h)-1], (*h)[:len(*h)-1]; return i }
// NKeeper is a Keeper that retains the n best ComparableDists that have been passed to Keep.
type NKeeper struct {
Heap
}
// NewNKeeper returns an NKeeper with the max value of the heap set to infinite distance. The
// returned NKeeper is able to retain at most n values.
func NewNKeeper(n int) *NKeeper {
k := NKeeper{make(Heap, 1, n)}
k.Heap[0].Dist = inf
return &k
}
// Keep adds c to the heap if its distance is less than the maximum value of the heap. If adding
// c would increase the size of the heap beyond the initial maximum length, the maximum value of
// the heap is dropped.
func (k *NKeeper) Keep(c ComparableDist) {
if c.Dist <= k.Heap[0].Dist { // Favour later finds to displace sentinel.
if len(k.Heap) == cap(k.Heap) {
heap.Pop(k)
}
heap.Push(k, c)
}
}
// DistKeeper is a Keeper that retains the ComparableDists within the specified distance of the
// query that it is called to Keep.
type DistKeeper struct {
Heap
}
// NewDistKeeper returns an DistKeeper with the maximum value of the heap set to d.
func NewDistKeeper(d float64) *DistKeeper { return &DistKeeper{Heap{{Dist: d}}} }
// Keep adds c to the heap if its distance is less than or equal to the max value of the heap.
func (k *DistKeeper) Keep(c ComparableDist) {
if c.Dist <= k.Heap[0].Dist {
heap.Push(k, c)
}
}
// Keeper implements a conditional max heap sorted on the Dist field of the ComparableDist type.
// kd search is guided by the distance stored in the max value of the heap.
type Keeper interface {
Keep(ComparableDist) // Keep conditionally pushes the provided ComparableDist onto the heap.
Max() ComparableDist // Max returns the maximum element of the Keeper.
heap.Interface
}
// NearestSet finds the nearest values to the query accepted by the provided Keeper, k.
// k must be able to return a ComparableDist specifying the maximum acceptable distance
// when Max() is called, and retains the results of the search in min sorted order after
// the call to NearestSet returns.
// If a sentinel ComparableDist with a nil Comparable is used by the Keeper to mark the
// maximum distance, NearestSet will remove it before returning.
func (t *Tree) NearestSet(k Keeper, q Comparable) {
if t.Root == nil {
return
}
t.Root.searchSet(q, k)
// Check whether we have retained a sentinel
// and flag removal if we have.
removeSentinel := k.Len() != 0 && k.Max().Comparable == nil
sort.Sort(sort.Reverse(k))
// This abuses the interface to drop the max.
// It is reasonable to do this because we know
// that the maximum value will now be at element
// zero, which is removed by the Pop method.
if removeSentinel {
k.Pop()
}
}
func (n *Node) searchSet(q Comparable, k Keeper) {
if n == nil {
return
}
c := q.Compare(n.Point, n.Plane)
k.Keep(ComparableDist{Comparable: n.Point, Dist: q.Distance(n.Point)})
if c <= 0 {
n.Left.searchSet(q, k)
if c*c <= k.Max().Dist {
n.Right.searchSet(q, k)
}
return
}
n.Right.searchSet(q, k)
if c*c <= k.Max().Dist {
n.Left.searchSet(q, k)
}
}
// Operation is a function that operates on a Comparable. The bounding volume and tree depth
// of the point is also provided. If done is returned true, the Operation is indicating that no
// further work needs to be done and so the Do function should traverse no further.
type Operation func(Comparable, *Bounding, int) (done bool)
// Do performs fn on all values stored in the tree. A boolean is returned indicating whether the
// Do traversal was interrupted by an Operation returning true. If fn alters stored values' sort
// relationships, future tree operation behaviors are undefined.
func (t *Tree) Do(fn Operation) bool {
if t.Root == nil {
return false
}
return t.Root.do(fn, 0)
}
func (n *Node) do(fn Operation, depth int) (done bool) {
if n.Left != nil {
done = n.Left.do(fn, depth+1)
if done {
return
}
}
done = fn(n.Point, n.Bounding, depth)
if done {
return
}
if n.Right != nil {
done = n.Right.do(fn, depth+1)
}
return
}
// DoBounded performs fn on all values stored in the tree that are within the specified bound.
// If b is nil, the result is the same as a Do. A boolean is returned indicating whether the
// DoBounded traversal was interrupted by an Operation returning true. If fn alters stored
// values' sort relationships future tree operation behaviors are undefined.
func (t *Tree) DoBounded(b *Bounding, fn Operation) bool {
if t.Root == nil {
return false
}
if b == nil {
return t.Root.do(fn, 0)
}
return t.Root.doBounded(fn, b, 0)
}
func (n *Node) doBounded(fn Operation, b *Bounding, depth int) (done bool) {
if n.Left != nil && b.Min.Compare(n.Point, n.Plane) < 0 {
done = n.Left.doBounded(fn, b, depth+1)
if done {
return
}
}
if b.Contains(n.Point) {
done = fn(n.Point, n.Bounding, depth)
if done {
return
}
}
if n.Right != nil && 0 < b.Max.Compare(n.Point, n.Plane) {
done = n.Right.doBounded(fn, b, depth+1)
}
return
}