blob: bc5e3aeef7befdc90c7e12cd11c64bba9faf9730 [file] [log] [blame]
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"fmt"
"math"
"reflect"
"testing"
"gonum.org/v1/gonum/floats"
)
func ExampleCircularMean() {
x := []float64{0, 0.25 * math.Pi, 0.75 * math.Pi}
weights := []float64{1, 2, 2.5}
cmean := CircularMean(x, weights)
fmt.Printf("The circular mean is %.5f.\n", cmean)
// Output:
// The circular mean is 1.37037.
}
func TestCircularMean(t *testing.T) {
for i, test := range []struct {
x []float64
wts []float64
ans float64
}{
// Values compared against scipy.
{
x: []float64{0, 2 * math.Pi},
ans: 0,
},
{
x: []float64{0, 0.5 * math.Pi},
ans: 0.78539816339744,
},
{
x: []float64{-1.5 * math.Pi, 0.5 * math.Pi, 2.5 * math.Pi},
wts: []float64{1, 2, 3},
ans: 0.5 * math.Pi,
},
{
x: []float64{0, 0.5 * math.Pi},
wts: []float64{1, 2},
ans: 1.10714871779409,
},
} {
c := CircularMean(test.x, test.wts)
if math.Abs(c-test.ans) > 1e-14 {
t.Errorf("Circular mean mismatch case %d: Expected %v, Found %v", i, test.ans, c)
}
}
if !panics(func() { CircularMean(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("CircularMean did not panic with x, wts length mismatch")
}
}
func ExampleCorrelation() {
x := []float64{8, -3, 7, 8, -4}
y := []float64{10, 5, 6, 3, -1}
w := []float64{2, 1.5, 3, 3, 2}
fmt.Println("Correlation computes the degree to which two datasets move together")
fmt.Println("about their mean. For example, x and y above move similarly.")
c := Correlation(x, y, w)
fmt.Printf("Correlation is %.5f\n", c)
// Output:
// Correlation computes the degree to which two datasets move together
// about their mean. For example, x and y above move similarly.
// Correlation is 0.59915
}
func TestCorrelation(t *testing.T) {
for i, test := range []struct {
x []float64
y []float64
w []float64
ans float64
}{
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{8, -3, 7, 8, -4},
w: nil,
ans: 1,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{8, -3, 7, 8, -4},
w: []float64{1, 1, 1, 1, 1},
ans: 1,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{8, -3, 7, 8, -4},
w: []float64{1, 6, 7, 0.8, 2.1},
ans: 1,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{10, 15, 4, 5, -1},
w: nil,
ans: 0.0093334660769059,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{10, 15, 4, 5, -1},
w: nil,
ans: 0.0093334660769059,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{10, 15, 4, 5, -1},
w: []float64{1, 3, 1, 2, 2},
ans: -0.13966633352689,
},
} {
c := Correlation(test.x, test.y, test.w)
if math.Abs(test.ans-c) > 1e-14 {
t.Errorf("Correlation mismatch case %d. Expected %v, Found %v", i, test.ans, c)
}
}
if !panics(func() { Correlation(make([]float64, 2), make([]float64, 3), make([]float64, 3)) }) {
t.Errorf("Correlation did not panic with length mismatch")
}
if !panics(func() { Correlation(make([]float64, 2), make([]float64, 3), nil) }) {
t.Errorf("Correlation did not panic with length mismatch")
}
if !panics(func() { Correlation(make([]float64, 3), make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Correlation did not panic with weights length mismatch")
}
}
func ExampleKendall() {
x := []float64{8, -3, 7, 8, -4}
y := []float64{10, 5, 6, 3, -1}
w := []float64{2, 1.5, 3, 3, 2}
fmt.Println("Kendall correlation computes the number of ordered pairs")
fmt.Println("between two datasets.")
c := Kendall(x, y, w)
fmt.Printf("Kendall correlation is %.5f\n", c)
// Output:
// Kendall correlation computes the number of ordered pairs
// between two datasets.
// Kendall correlation is 0.25000
}
func TestKendall(t *testing.T) {
for i, test := range []struct {
x []float64
y []float64
weights []float64
ans float64
}{
{
x: []float64{0, 1, 2, 3},
y: []float64{0, 1, 2, 3},
weights: nil,
ans: 1,
},
{
x: []float64{0, 1},
y: []float64{1, 0},
weights: nil,
ans: -1,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{10, 15, 4, 5, -1},
weights: nil,
ans: 0.2,
},
{
x: []float64{8, -3, 7, 8, -4},
y: []float64{10, 5, 6, 3, -1},
weights: nil,
ans: 0.4,
},
{
x: []float64{1, 2, 3, 4, 5},
y: []float64{2, 3, 4, 5, 6},
weights: []float64{1, 1, 1, 1, 1},
ans: 1,
},
{
x: []float64{1, 2, 3, 2, 1},
y: []float64{2, 3, 2, 1, 0},
weights: []float64{1, 1, 0, 0, 0},
ans: 1,
},
} {
c := Kendall(test.x, test.y, test.weights)
if math.Abs(test.ans-c) > 1e-14 {
t.Errorf("Correlation mismatch case %d. Expected %v, Found %v", i, test.ans, c)
}
}
if !panics(func() { Kendall(make([]float64, 2), make([]float64, 3), make([]float64, 3)) }) {
t.Errorf("Kendall did not panic with length mismatch")
}
if !panics(func() { Kendall(make([]float64, 2), make([]float64, 3), nil) }) {
t.Errorf("Kendall did not panic with length mismatch")
}
if !panics(func() { Kendall(make([]float64, 3), make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Kendall did not panic with weights length mismatch")
}
}
func ExampleCovariance() {
fmt.Println("Covariance computes the degree to which datasets move together")
fmt.Println("about their mean.")
x := []float64{8, -3, 7, 8, -4}
y := []float64{10, 2, 2, 4, 1}
cov := Covariance(x, y, nil)
fmt.Printf("Cov = %.4f\n", cov)
fmt.Println("If datasets move perfectly together, the variance equals the covariance")
y2 := []float64{12, 1, 11, 12, 0}
cov2 := Covariance(x, y2, nil)
varX := Variance(x, nil)
fmt.Printf("Cov2 is %.4f, VarX is %.4f", cov2, varX)
// Output:
// Covariance computes the degree to which datasets move together
// about their mean.
// Cov = 13.8000
// If datasets move perfectly together, the variance equals the covariance
// Cov2 is 37.7000, VarX is 37.7000
}
func TestCovariance(t *testing.T) {
for i, test := range []struct {
p []float64
q []float64
weights []float64
ans float64
}{
{
p: []float64{0.75, 0.1, 0.05},
q: []float64{0.5, 0.25, 0.25},
ans: 0.05625,
},
{
p: []float64{1, 2, 3},
q: []float64{2, 4, 6},
ans: 2,
},
{
p: []float64{1, 2, 3},
q: []float64{1, 4, 9},
ans: 4,
},
{
p: []float64{1, 2, 3},
q: []float64{1, 4, 9},
weights: []float64{1, 1.5, 1},
ans: 3.2,
},
{
p: []float64{1, 4, 9},
q: []float64{1, 4, 9},
weights: []float64{1, 1.5, 1},
ans: 13.142857142857146,
},
} {
c := Covariance(test.p, test.q, test.weights)
if math.Abs(c-test.ans) > 1e-14 {
t.Errorf("Covariance mismatch case %d: Expected %v, Found %v", i, test.ans, c)
}
}
// test the panic states
if !panics(func() { Covariance(make([]float64, 2), make([]float64, 3), nil) }) {
t.Errorf("Covariance did not panic with x, y length mismatch")
}
if !panics(func() { Covariance(make([]float64, 3), make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Covariance did not panic with x, weights length mismatch")
}
}
func TestCrossEntropy(t *testing.T) {
for i, test := range []struct {
p []float64
q []float64
ans float64
}{
{
p: []float64{0.75, 0.1, 0.05},
q: []float64{0.5, 0.25, 0.25},
ans: 0.7278045395879426,
},
{
p: []float64{0.75, 0.1, 0.05, 0, 0, 0},
q: []float64{0.5, 0.25, 0.25, 0, 0, 0},
ans: 0.7278045395879426,
},
{
p: []float64{0.75, 0.1, 0.05, 0, 0, 0.1},
q: []float64{0.5, 0.25, 0.25, 0, 0, 0},
ans: math.Inf(1),
},
{
p: nil,
q: nil,
ans: 0,
},
} {
c := CrossEntropy(test.p, test.q)
if math.Abs(c-test.ans) > 1e-14 {
t.Errorf("Cross entropy mismatch case %d: Expected %v, Found %v", i, test.ans, c)
}
}
if !panics(func() { CrossEntropy(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("CrossEntropy did not panic with p, q length mismatch")
}
}
func ExampleEntropy() {
p := []float64{0.05, 0.1, 0.9, 0.05}
entP := Entropy(p)
q := []float64{0.2, 0.4, 0.25, 0.15}
entQ := Entropy(q)
r := []float64{0.2, 0, 0, 0.5, 0, 0.2, 0.1, 0, 0, 0}
entR := Entropy(r)
s := []float64{0, 0, 1, 0}
entS := Entropy(s)
fmt.Println("Entropy is a measure of the amount of uncertainty in a distribution")
fmt.Printf("The second bin of p is very likely to occur. It's entropy is %.4f\n", entP)
fmt.Printf("The distribution of q is more spread out. It's entropy is %.4f\n", entQ)
fmt.Println("Adding buckets with zero probability does not change the entropy.")
fmt.Printf("The entropy of r is: %.4f\n", entR)
fmt.Printf("A distribution with no uncertainty has entropy %.4f\n", entS)
// Output:
// Entropy is a measure of the amount of uncertainty in a distribution
// The second bin of p is very likely to occur. It's entropy is 0.6247
// The distribution of q is more spread out. It's entropy is 1.3195
// Adding buckets with zero probability does not change the entropy.
// The entropy of r is: 1.2206
// A distribution with no uncertainty has entropy 0.0000
}
func ExampleExKurtosis() {
fmt.Println(`Kurtosis is a measure of the 'peakedness' of a distribution, and the
excess kurtosis is the kurtosis above or below that of the standard normal
distribution`)
x := []float64{5, 4, -3, -2}
kurt := ExKurtosis(x, nil)
fmt.Printf("ExKurtosis = %.5f\n", kurt)
weights := []float64{1, 2, 3, 5}
wKurt := ExKurtosis(x, weights)
fmt.Printf("Weighted ExKurtosis is %.4f", wKurt)
// Output:
// Kurtosis is a measure of the 'peakedness' of a distribution, and the
// excess kurtosis is the kurtosis above or below that of the standard normal
// distribution
// ExKurtosis = -5.41200
// Weighted ExKurtosis is -0.6779
}
func TestExKurtosis(t *testing.T) {
// the example does a good job, this just has to cover the panic
if !panics(func() { ExKurtosis(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("ExKurtosis did not panic with x, weights length mismatch")
}
}
func ExampleGeometricMean() {
x := []float64{8, 2, 9, 15, 4}
weights := []float64{2, 2, 6, 7, 1}
mean := Mean(x, weights)
gmean := GeometricMean(x, weights)
logx := make([]float64, len(x))
for i, v := range x {
logx[i] = math.Log(v)
}
expMeanLog := math.Exp(Mean(logx, weights))
fmt.Printf("The arithmetic mean is %.4f, but the geometric mean is %.4f.\n", mean, gmean)
fmt.Printf("The exponential of the mean of the logs is %.4f\n", expMeanLog)
// Output:
// The arithmetic mean is 10.1667, but the geometric mean is 8.7637.
// The exponential of the mean of the logs is 8.7637
}
func TestGeometricMean(t *testing.T) {
for i, test := range []struct {
x []float64
wts []float64
ans float64
}{
{
x: []float64{2, 8},
ans: 4,
},
{
x: []float64{3, 81},
wts: []float64{2, 1},
ans: 9,
},
} {
c := GeometricMean(test.x, test.wts)
if math.Abs(c-test.ans) > 1e-14 {
t.Errorf("Geometric mean mismatch case %d: Expected %v, Found %v", i, test.ans, c)
}
}
if !panics(func() { GeometricMean(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("GeometricMean did not panic with x, wts length mismatch")
}
}
func ExampleHarmonicMean() {
x := []float64{8, 2, 9, 15, 4}
weights := []float64{2, 2, 6, 7, 1}
mean := Mean(x, weights)
hmean := HarmonicMean(x, weights)
fmt.Printf("The arithmetic mean is %.5f, but the harmonic mean is %.4f.\n", mean, hmean)
// Output:
// The arithmetic mean is 10.16667, but the harmonic mean is 6.8354.
}
func TestHarmonicMean(t *testing.T) {
for i, test := range []struct {
x []float64
wts []float64
ans float64
}{
{
x: []float64{.5, .125},
ans: .2,
},
{
x: []float64{.5, .125},
wts: []float64{2, 1},
ans: .25,
},
} {
c := HarmonicMean(test.x, test.wts)
if math.Abs(c-test.ans) > 1e-14 {
t.Errorf("Harmonic mean mismatch case %d: Expected %v, Found %v", i, test.ans, c)
}
}
if !panics(func() { HarmonicMean(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("HarmonicMean did not panic with x, wts length mismatch")
}
}
func TestHistogram(t *testing.T) {
for i, test := range []struct {
x []float64
weights []float64
dividers []float64
ans []float64
}{
{
x: []float64{1, 3, 5, 6, 7, 8},
dividers: []float64{0, 2, 4, 6, 7, 9},
ans: []float64{1, 1, 1, 1, 2},
},
{
x: []float64{1, 3, 5, 6, 7, 8},
dividers: []float64{1, 2, 4, 6, 7, 9},
weights: []float64{1, 2, 1, 1, 1, 2},
ans: []float64{1, 2, 1, 1, 3},
},
{
x: []float64{1, 8},
dividers: []float64{0, 2, 4, 6, 7, 9},
weights: []float64{1, 2},
ans: []float64{1, 0, 0, 0, 2},
},
{
x: []float64{1, 8},
dividers: []float64{0, 2, 4, 6, 7, 9},
ans: []float64{1, 0, 0, 0, 1},
},
{
x: []float64{},
dividers: []float64{1, 3},
ans: []float64{0},
},
} {
hist := Histogram(nil, test.dividers, test.x, test.weights)
if !floats.Equal(hist, test.ans) {
t.Errorf("Hist mismatch case %d. Expected %v, Found %v", i, test.ans, hist)
}
// Test with non-zero values
Histogram(hist, test.dividers, test.x, test.weights)
if !floats.Equal(hist, test.ans) {
t.Errorf("Hist mismatch case %d. Expected %v, Found %v", i, test.ans, hist)
}
}
// panic cases
for _, test := range []struct {
name string
x []float64
weights []float64
dividers []float64
count []float64
}{
{
name: "len(x) != len(weights)",
x: []float64{1, 3, 5, 6, 7, 8},
weights: []float64{1, 1, 1, 1},
},
{
name: "len(count) != len(dividers) - 1",
x: []float64{1, 3, 5, 6, 7, 8},
dividers: []float64{1, 4, 9},
count: make([]float64, 6),
},
{
name: "dividers not sorted",
x: []float64{1, 3, 5, 6, 7, 8},
dividers: []float64{0, -1, 0},
},
{
name: "x not sorted",
x: []float64{1, 5, 2, 9, 7, 8},
dividers: []float64{1, 4, 9},
},
{
name: "fewer than 2 dividers",
x: []float64{1, 2, 3},
dividers: []float64{5},
},
{
name: "x too large",
x: []float64{1, 2, 3},
dividers: []float64{1, 3},
},
{
name: "x too small",
x: []float64{1, 2, 3},
dividers: []float64{2, 3},
},
} {
if !panics(func() { Histogram(test.count, test.dividers, test.x, test.weights) }) {
t.Errorf("Histogram did not panic when %s", test.name)
}
}
}
func ExampleHistogram() {
x := make([]float64, 101)
for i := range x {
x[i] = 1.1 * float64(i) // x data ranges from 0 to 110
}
dividers := []float64{0, 7, 20, 100, 1000}
fmt.Println(`Histogram counts the amount of data in the bins specified by
the dividers. In this data set, there are 7 data points less than 7 (between dividers[0]
and dividers[1]), 12 data points between 7 and 20 (dividers[1] and dividers[2]),
and 0 data points above 1000. Since dividers has length 5, there will be 4 bins.`)
hist := Histogram(nil, dividers, x, nil)
fmt.Printf("Hist = %v\n", hist)
fmt.Println()
fmt.Println("For ease, the floats Span function can be used to set the dividers")
nBins := 10
dividers = make([]float64, nBins+1)
min := floats.Min(x)
max := floats.Max(x)
// Increase the maximum divider so that the maximum value of x is contained
// within the last bucket.
max += 1
floats.Span(dividers, min, max)
// Span includes the min and the max. Trim the dividers to create 10 buckets
hist = Histogram(nil, dividers, x, nil)
fmt.Printf("Hist = %v\n", hist)
fmt.Println()
fmt.Println(`Histogram also works with weighted data, and allows reusing of
the count field in order to avoid extra garbage`)
weights := make([]float64, len(x))
for i := range weights {
weights[i] = float64(i + 1)
}
Histogram(hist, dividers, x, weights)
fmt.Printf("Weighted Hist = %v\n", hist)
// Output:
// Histogram counts the amount of data in the bins specified by
// the dividers. In this data set, there are 7 data points less than 7 (between dividers[0]
// and dividers[1]), 12 data points between 7 and 20 (dividers[1] and dividers[2]),
// and 0 data points above 1000. Since dividers has length 5, there will be 4 bins.
// Hist = [7 12 72 10]
//
// For ease, the floats Span function can be used to set the dividers
// Hist = [11 10 10 10 10 10 10 10 10 10]
//
// Histogram also works with weighted data, and allows reusing of
// the count field in order to avoid extra garbage
// Weighted Hist = [66 165 265 365 465 565 665 765 865 965]
}
func TestJensenShannon(t *testing.T) {
for i, test := range []struct {
p []float64
q []float64
}{
{
p: []float64{0.5, 0.1, 0.3, 0.1},
q: []float64{0.1, 0.4, 0.25, 0.25},
},
{
p: []float64{0.4, 0.6, 0.0},
q: []float64{0.2, 0.2, 0.6},
},
{
p: []float64{0.1, 0.1, 0.0, 0.8},
q: []float64{0.6, 0.3, 0.0, 0.1},
},
{
p: []float64{0.5, 0.1, 0.3, 0.1},
q: []float64{0.5, 0, 0.25, 0.25},
},
{
p: []float64{0.5, 0.1, 0, 0.4},
q: []float64{0.1, 0.4, 0.25, 0.25},
},
} {
m := make([]float64, len(test.p))
p := test.p
q := test.q
floats.Add(m, p)
floats.Add(m, q)
floats.Scale(0.5, m)
js1 := 0.5*KullbackLeibler(p, m) + 0.5*KullbackLeibler(q, m)
js2 := JensenShannon(p, q)
if math.IsNaN(js2) {
t.Errorf("In case %v, JS distance is NaN", i)
}
if math.Abs(js1-js2) > 1e-14 {
t.Errorf("JS mismatch case %v. Expected %v, found %v.", i, js1, js2)
}
}
if !panics(func() { JensenShannon(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("JensenShannon did not panic with p, q length mismatch")
}
}
func TestKolmogorovSmirnov(t *testing.T) {
for i, test := range []struct {
x []float64
xWeights []float64
y []float64
yWeights []float64
dist float64
}{
{
dist: 0,
},
{
x: []float64{1},
dist: 1,
},
{
y: []float64{1},
dist: 1,
},
{
x: []float64{1},
xWeights: []float64{8},
dist: 1,
},
{
y: []float64{1},
yWeights: []float64{8},
dist: 1,
},
{
x: []float64{1},
xWeights: []float64{8},
y: []float64{1},
yWeights: []float64{8},
dist: 0,
},
{
x: []float64{1, 1, 1},
xWeights: []float64{2, 3, 7},
y: []float64{1},
yWeights: []float64{8},
dist: 0,
},
{
x: []float64{1, 1, 1, 1, 1},
y: []float64{1, 1, 1},
yWeights: []float64{2, 5, 2},
dist: 0,
},
{
x: []float64{1, 2, 3},
y: []float64{1, 2, 3},
dist: 0,
},
{
x: []float64{1, 2, 3},
y: []float64{1, 2, 3},
yWeights: []float64{1, 1, 1},
dist: 0,
},
{
x: []float64{1, 2, 3},
xWeights: []float64{1, 1, 1},
y: []float64{1, 2, 3},
yWeights: []float64{1, 1, 1},
dist: 0,
},
{
x: []float64{1, 2},
xWeights: []float64{2, 5},
y: []float64{1, 1, 2, 2, 2, 2, 2},
dist: 0,
},
{
x: []float64{1, 1, 2, 2, 2, 2, 2},
y: []float64{1, 2},
yWeights: []float64{2, 5},
dist: 0,
},
{
x: []float64{1, 1, 2, 2, 2},
xWeights: []float64{0.5, 1.5, 1, 2, 2},
y: []float64{1, 2},
yWeights: []float64{2, 5},
dist: 0,
},
{
x: []float64{1, 2, 3, 4},
y: []float64{5, 6},
dist: 1,
},
{
x: []float64{5, 6},
y: []float64{1, 2, 3, 4},
dist: 1,
},
{
x: []float64{5, 6},
xWeights: []float64{8, 7},
y: []float64{1, 2, 3, 4},
dist: 1,
},
{
x: []float64{5, 6},
xWeights: []float64{8, 7},
y: []float64{1, 2, 3, 4},
yWeights: []float64{9, 2, 1, 6},
dist: 1,
},
{
x: []float64{-4, 5, 6},
xWeights: []float64{0, 8, 7},
y: []float64{1, 2, 3, 4},
yWeights: []float64{9, 2, 1, 6},
dist: 1,
},
{
x: []float64{-4, -2, -2, 5, 6},
xWeights: []float64{0, 0, 0, 8, 7},
y: []float64{1, 2, 3, 4},
yWeights: []float64{9, 2, 1, 6},
dist: 1,
},
{
x: []float64{1, 2, 3},
y: []float64{1, 1, 3},
dist: 1.0 / 3.0,
},
{
x: []float64{1, 2, 3},
y: []float64{1, 3},
yWeights: []float64{2, 1},
dist: 1.0 / 3.0,
},
{
x: []float64{1, 2, 3},
xWeights: []float64{2, 2, 2},
y: []float64{1, 3},
yWeights: []float64{2, 1},
dist: 1.0 / 3.0,
},
{
x: []float64{2, 3, 4},
y: []float64{1, 5},
dist: 1.0 / 2.0,
},
{
x: []float64{1, 2, math.NaN()},
y: []float64{1, 1, 3},
dist: math.NaN(),
},
{
x: []float64{1, 2, 3},
y: []float64{1, 1, math.NaN()},
dist: math.NaN(),
},
} {
dist := KolmogorovSmirnov(test.x, test.xWeights, test.y, test.yWeights)
if math.Abs(dist-test.dist) > 1e-14 && !(math.IsNaN(test.dist) && math.IsNaN(dist)) {
t.Errorf("Distance mismatch case %v: Expected: %v, Found: %v", i, test.dist, dist)
}
}
// panic cases
for _, test := range []struct {
name string
x []float64
xWeights []float64
y []float64
yWeights []float64
}{
{
name: "len(x) != len(xWeights)",
x: []float64{1, 3, 5, 6, 7, 8},
xWeights: []float64{1, 1, 1, 1},
},
{
name: "len(y) != len(yWeights)",
x: []float64{1, 3, 5, 6, 7, 8},
y: []float64{1, 3, 5, 6, 7, 8},
yWeights: []float64{1, 1, 1, 1},
},
{
name: "x not sorted",
x: []float64{10, 3, 5, 6, 7, 8},
y: []float64{1, 3, 5, 6, 7, 8},
},
{
name: "y not sorted",
x: []float64{1, 3, 5, 6, 7, 8},
y: []float64{10, 3, 5, 6, 7, 8},
},
} {
if !panics(func() { KolmogorovSmirnov(test.x, test.xWeights, test.y, test.yWeights) }) {
t.Errorf("KolmogorovSmirnov did not panic when %s", test.name)
}
}
}
func ExampleKullbackLeibler() {
p := []float64{0.05, 0.1, 0.9, 0.05}
q := []float64{0.2, 0.4, 0.25, 0.15}
s := []float64{0, 0, 1, 0}
klPQ := KullbackLeibler(p, q)
klPS := KullbackLeibler(p, s)
klPP := KullbackLeibler(p, p)
fmt.Println("Kullback-Leibler is one measure of the difference between two distributions")
fmt.Printf("The K-L distance between p and q is %.4f\n", klPQ)
fmt.Println("It is impossible for s and p to be the same distribution, because")
fmt.Println("the first bucket has zero probability in s and non-zero in p. Thus,")
fmt.Printf("the K-L distance between them is %.4f\n", klPS)
fmt.Printf("The K-L distance between identical distributions is %.4f\n", klPP)
// Kullback-Leibler is one measure of the difference between two distributions
// The K-L distance between p and q is 0.8900
// It is impossible for s and p to be the same distribution, because
// the first bucket has zero probability in s and non-zero in p. Thus,
// the K-L distance between them is +Inf
// The K-L distance between identical distributions is 0.0000
}
func TestKullbackLeibler(t *testing.T) {
if !panics(func() { KullbackLeibler(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("KullbackLeibler did not panic with p, q length mismatch")
}
}
var linearRegressionTests = []struct {
name string
x, y []float64
weights []float64
origin bool
alpha float64
beta float64
r float64
tol float64
}{
{
name: "faithful",
x: faithful.waiting,
y: faithful.eruptions,
// Values calculated by R using lm(eruptions ~ waiting, data=faithful).
alpha: -1.87402,
beta: 0.07563,
r: 0.8114608,
tol: 1e-5,
},
{
name: "faithful through origin",
x: faithful.waiting,
y: faithful.eruptions,
origin: true,
// Values calculated by R using lm(eruptions ~ waiting - 1, data=faithful).
alpha: 0,
beta: 0.05013,
r: 0.9726036,
tol: 1e-5,
},
{
name: "faithful explicit weights",
x: faithful.waiting,
y: faithful.eruptions,
weights: func() []float64 {
w := make([]float64, len(faithful.eruptions))
for i := range w {
w[i] = 1
}
return w
}(),
// Values calculated by R using lm(eruptions ~ waiting, data=faithful).
alpha: -1.87402,
beta: 0.07563,
r: 0.8114608,
tol: 1e-5,
},
{
name: "faithful non-uniform weights",
x: faithful.waiting,
y: faithful.eruptions,
weights: faithful.waiting, // Just an arbitrary set of non-uniform weights.
// Values calculated by R using lm(eruptions ~ waiting, data=faithful, weights=faithful$waiting).
alpha: -1.79268,
beta: 0.07452,
r: 0.7840372,
tol: 1e-5,
},
}
func TestLinearRegression(t *testing.T) {
for _, test := range linearRegressionTests {
alpha, beta := LinearRegression(test.x, test.y, test.weights, test.origin)
var r float64
if test.origin {
r = RNoughtSquared(test.x, test.y, test.weights, beta)
} else {
r = RSquared(test.x, test.y, test.weights, alpha, beta)
ests := make([]float64, len(test.y))
for i, x := range test.x {
ests[i] = alpha + beta*x
}
rvals := RSquaredFrom(ests, test.y, test.weights)
if r != rvals {
t.Errorf("%s: RSquared and RSquaredFrom mismatch: %v != %v", test.name, r, rvals)
}
}
if !floats.EqualWithinAbsOrRel(alpha, test.alpha, test.tol, test.tol) {
t.Errorf("%s: unexpected alpha estimate: want:%v got:%v", test.name, test.alpha, alpha)
}
if !floats.EqualWithinAbsOrRel(beta, test.beta, test.tol, test.tol) {
t.Errorf("%s: unexpected beta estimate: want:%v got:%v", test.name, test.beta, beta)
}
if !floats.EqualWithinAbsOrRel(r, test.r, test.tol, test.tol) {
t.Errorf("%s: unexpected r estimate: want:%v got:%v", test.name, test.r, r)
}
}
}
func TestChiSquare(t *testing.T) {
for i, test := range []struct {
p []float64
q []float64
res float64
}{
{
p: []float64{16, 18, 16, 14, 12, 12},
q: []float64{16, 16, 16, 16, 16, 8},
res: 3.5,
},
{
p: []float64{16, 18, 16, 14, 12, 12},
q: []float64{8, 20, 20, 16, 12, 12},
res: 9.25,
},
{
p: []float64{40, 60, 30, 45},
q: []float64{50, 50, 50, 50},
res: 12.5,
},
{
p: []float64{40, 60, 30, 45, 0, 0},
q: []float64{50, 50, 50, 50, 0, 0},
res: 12.5,
},
} {
resultpq := ChiSquare(test.p, test.q)
if math.Abs(resultpq-test.res) > 1e-10 {
t.Errorf("ChiSquare distance mismatch in case %d. Expected %v, Found %v", i, test.res, resultpq)
}
}
if !panics(func() { ChiSquare(make([]float64, 2), make([]float64, 3)) }) {
t.Errorf("ChiSquare did not panic with length mismatch")
}
}
// panics returns true if the called function panics during evaluation.
func panics(fun func()) (b bool) {
defer func() {
err := recover()
if err != nil {
b = true
}
}()
fun()
return
}
func TestBhattacharyya(t *testing.T) {
for i, test := range []struct {
p []float64
q []float64
res float64
}{
{
p: []float64{0.5, 0.1, 0.3, 0.1},
q: []float64{0.1, 0.4, 0.25, 0.25},
res: 0.15597338718671386,
},
{
p: []float64{0.4, 0.6, 0.0},
q: []float64{0.2, 0.2, 0.6},
res: 0.46322207765351153,
},
{
p: []float64{0.1, 0.1, 0.0, 0.8},
q: []float64{0.6, 0.3, 0.0, 0.1},
res: 0.3552520032137785,
},
} {
resultpq := Bhattacharyya(test.p, test.q)
resultqp := Bhattacharyya(test.q, test.p)
if math.Abs(resultpq-test.res) > 1e-10 {
t.Errorf("Bhattacharyya distance mismatch in case %d. Expected %v, Found %v", i, test.res, resultpq)
}
if math.Abs(resultpq-resultqp) > 1e-10 {
t.Errorf("Bhattacharyya distance is assymmetric in case %d.", i)
}
}
// Bhattacharyya should panic if the inputs have different length
if !panics(func() { Bhattacharyya(make([]float64, 2), make([]float64, 3)) }) {
t.Errorf("Bhattacharyya did not panic with length mismatch")
}
}
func TestHellinger(t *testing.T) {
for i, test := range []struct {
p []float64
q []float64
res float64
}{
{
p: []float64{0.5, 0.1, 0.3, 0.1},
q: []float64{0.1, 0.4, 0.25, 0.25},
res: 0.3800237367441919,
},
{
p: []float64{0.4, 0.6, 0.0},
q: []float64{0.2, 0.2, 0.6},
res: 0.6088900771170487,
},
{
p: []float64{0.1, 0.1, 0.0, 0.8},
q: []float64{0.6, 0.3, 0.0, 0.1},
res: 0.5468118803484205,
},
} {
resultpq := Hellinger(test.p, test.q)
resultqp := Hellinger(test.q, test.p)
if math.Abs(resultpq-test.res) > 1e-10 {
t.Errorf("Hellinger distance mismatch in case %d. Expected %v, Found %v", i, test.res, resultpq)
}
if math.Abs(resultpq-resultqp) > 1e-10 {
t.Errorf("Hellinger distance is assymmetric in case %d.", i)
}
}
if !panics(func() { Hellinger(make([]float64, 2), make([]float64, 3)) }) {
t.Errorf("Hellinger did not panic with length mismatch")
}
}
func ExampleMean() {
x := []float64{8.2, -6, 5, 7}
mean := Mean(x, nil)
fmt.Printf("The mean of the samples is %.4f\n", mean)
w := []float64{2, 6, 3, 5}
weightedMean := Mean(x, w)
fmt.Printf("The weighted mean of the samples is %.4f\n", weightedMean)
x2 := []float64{8.2, 8.2, -6, -6, -6, -6, -6, -6, 5, 5, 5, 7, 7, 7, 7, 7}
mean2 := Mean(x2, nil)
fmt.Printf("The mean of x2 is %.4f\n", mean2)
fmt.Println("The weights act as if there were more samples of that number")
// Output:
// The mean of the samples is 3.5500
// The weighted mean of the samples is 1.9000
// The mean of x2 is 1.9000
// The weights act as if there were more samples of that number
}
func TestMean(t *testing.T) {
if !panics(func() { Mean(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Mean did not panic with x, weights length mismatch")
}
}
func TestMode(t *testing.T) {
for i, test := range []struct {
x []float64
weights []float64
ans float64
count float64
}{
{},
{
x: []float64{1, 6, 1, 9, -2},
ans: 1,
count: 2,
},
{
x: []float64{1, 6, 1, 9, -2},
weights: []float64{1, 7, 3, 5, 0},
ans: 6,
count: 7,
},
} {
m, count := Mode(test.x, test.weights)
if test.ans != m {
t.Errorf("Mode mismatch case %d. Expected %v, found %v", i, test.ans, m)
}
if test.count != count {
t.Errorf("Mode count mismatch case %d. Expected %v, found %v", i, test.count, count)
}
}
if !panics(func() { Mode(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Mode did not panic with x, weights length mismatch")
}
}
func TestMixedMoment(t *testing.T) {
for i, test := range []struct {
x, y, weights []float64
r, s float64
ans float64
}{
{
x: []float64{10, 2, 1, 8, 5},
y: []float64{8, 15, 1, 6, 3},
r: 1,
s: 1,
ans: 0.48,
},
{
x: []float64{10, 2, 1, 8, 5},
y: []float64{8, 15, 1, 6, 3},
weights: []float64{1, 1, 1, 1, 1},
r: 1,
s: 1,
ans: 0.48,
},
{
x: []float64{10, 2, 1, 8, 5},
y: []float64{8, 15, 1, 6, 3},
weights: []float64{2, 3, 0.2, 8, 4},
r: 1,
s: 1,
ans: -4.786371011357490,
},
{
x: []float64{10, 2, 1, 8, 5},
y: []float64{8, 15, 1, 6, 3},
weights: []float64{2, 3, 0.2, 8, 4},
r: 2,
s: 3,
ans: 1.598600579313326e+03,
},
} {
m := BivariateMoment(test.r, test.s, test.x, test.y, test.weights)
if math.Abs(test.ans-m) > 1e-14 {
t.Errorf("Moment mismatch case %d. Expected %v, found %v", i, test.ans, m)
}
}
if !panics(func() { BivariateMoment(1, 1, make([]float64, 3), make([]float64, 2), nil) }) {
t.Errorf("Moment did not panic with x, y length mismatch")
}
if !panics(func() { BivariateMoment(1, 1, make([]float64, 2), make([]float64, 3), nil) }) {
t.Errorf("Moment did not panic with x, y length mismatch")
}
if !panics(func() { BivariateMoment(1, 1, make([]float64, 2), make([]float64, 2), make([]float64, 3)) }) {
t.Errorf("Moment did not panic with x, weights length mismatch")
}
if !panics(func() { BivariateMoment(1, 1, make([]float64, 2), make([]float64, 2), make([]float64, 1)) }) {
t.Errorf("Moment did not panic with x, weights length mismatch")
}
}
func TestMoment(t *testing.T) {
for i, test := range []struct {
x []float64
weights []float64
moment float64
ans float64
}{
{
x: []float64{6, 2, 4, 8, 10},
moment: 5,
ans: 0,
},
{
x: []float64{6, 2, 4, 8, 10},
weights: []float64{1, 2, 2, 2, 1},
moment: 5,
ans: 121.875,
},
} {
m := Moment(test.moment, test.x, test.weights)
if math.Abs(test.ans-m) > 1e-14 {
t.Errorf("Moment mismatch case %d. Expected %v, found %v", i, test.ans, m)
}
}
if !panics(func() { Moment(1, make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Moment did not panic with x, weights length mismatch")
}
if !panics(func() { Moment(1, make([]float64, 2), make([]float64, 3)) }) {
t.Errorf("Moment did not panic with x, weights length mismatch")
}
}
func TestMomentAbout(t *testing.T) {
for i, test := range []struct {
x []float64
weights []float64
moment float64
mean float64
ans float64
}{
{
x: []float64{6, 2, 4, 8, 9},
mean: 3,
moment: 5,
ans: 2.2288e3,
},
{
x: []float64{6, 2, 4, 8, 9},
weights: []float64{1, 2, 2, 2, 1},
mean: 3,
moment: 5,
ans: 1.783625e3,
},
} {
m := MomentAbout(test.moment, test.x, test.mean, test.weights)
if math.Abs(test.ans-m) > 1e-14 {
t.Errorf("MomentAbout mismatch case %d. Expected %v, found %v", i, test.ans, m)
}
}
if !panics(func() { MomentAbout(1, make([]float64, 3), 0, make([]float64, 2)) }) {
t.Errorf("MomentAbout did not panic with x, weights length mismatch")
}
}
func TestCDF(t *testing.T) {
cumulantKinds := []CumulantKind{Empirical}
for i, test := range []struct {
q []float64
x []float64
weights []float64
ans [][]float64
}{
{},
{
q: []float64{0, 0.9, 1, 1.1, 2.9, 3, 3.1, 4.9, 5, 5.1},
x: []float64{1, 2, 3, 4, 5},
ans: [][]float64{{0, 0, 0.2, 0.2, 0.4, 0.6, 0.6, 0.8, 1, 1}},
},
{
q: []float64{0, 0.9, 1, 1.1, 2.9, 3, 3.1, 4.9, 5, 5.1},
x: []float64{1, 2, 3, 4, 5},
weights: []float64{1, 1, 1, 1, 1},
ans: [][]float64{{0, 0, 0.2, 0.2, 0.4, 0.6, 0.6, 0.8, 1, 1}},
},
{
q: []float64{0, 0.9, 1},
x: []float64{math.NaN()},
ans: [][]float64{{math.NaN(), math.NaN(), math.NaN()}},
},
} {
copyX := make([]float64, len(test.x))
copy(copyX, test.x)
var copyW []float64
if test.weights != nil {
copyW = make([]float64, len(test.weights))
copy(copyW, test.weights)
}
for j, q := range test.q {
for k, kind := range cumulantKinds {
v := CDF(q, kind, test.x, test.weights)
if !floats.Equal(copyX, test.x) && !math.IsNaN(v) {
t.Errorf("x changed for case %d kind %d percentile %v", i, k, q)
}
if !floats.Equal(copyW, test.weights) {
t.Errorf("x changed for case %d kind %d percentile %v", i, k, q)
}
if v != test.ans[k][j] && !(math.IsNaN(v) && math.IsNaN(test.ans[k][j])) {
t.Errorf("mismatch case %d kind %d percentile %v. Expected: %v, found: %v", i, k, q, test.ans[k][j], v)
}
}
}
}
// these test cases should all result in a panic
for i, test := range []struct {
name string
q float64
kind CumulantKind
x []float64
weights []float64
}{
{
name: "len(x) != len(weights)",
q: 1.5,
kind: Empirical,
x: []float64{1, 2, 3, 4, 5},
weights: []float64{1, 2, 3},
},
{
name: "unsorted x",
q: 1.5,
kind: Empirical,
x: []float64{3, 2, 1},
},
{
name: "unknown CumulantKind",
q: 1.5,
kind: CumulantKind(1000), // bogus
x: []float64{1, 2, 3},
},
} {
if !panics(func() { CDF(test.q, test.kind, test.x, test.weights) }) {
t.Errorf("did not panic as expected with %s for case %d kind %d percentile %v x %v weights %v", test.name, i, test.kind, test.q, test.x, test.weights)
}
}
}
func TestQuantile(t *testing.T) {
cumulantKinds := []CumulantKind{Empirical}
for i, test := range []struct {
p []float64
x []float64
w []float64
ans [][]float64
}{
{
p: []float64{0, 0.05, 0.1, 0.15, 0.45, 0.5, 0.55, 0.85, 0.9, 0.95, 1},
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
w: nil,
ans: [][]float64{{1, 1, 1, 2, 5, 5, 6, 9, 9, 10, 10}},
},
{
p: []float64{0, 0.05, 0.1, 0.15, 0.45, 0.5, 0.55, 0.85, 0.9, 0.95, 1},
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
w: []float64{3, 3, 3, 3, 3, 3, 3, 3, 3, 3},
ans: [][]float64{{1, 1, 1, 2, 5, 5, 6, 9, 9, 10, 10}},
},
{
p: []float64{0.5},
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, math.NaN(), 10},
ans: [][]float64{{math.NaN()}},
},
} {
copyX := make([]float64, len(test.x))
copy(copyX, test.x)
var copyW []float64
if test.w != nil {
copyW = make([]float64, len(test.w))
copy(copyW, test.w)
}
for j, p := range test.p {
for k, kind := range cumulantKinds {
v := Quantile(p, kind, test.x, test.w)
if !floats.Same(copyX, test.x) {
t.Errorf("x changed for case %d kind %d percentile %v", i, k, p)
}
if !floats.Same(copyW, test.w) {
t.Errorf("x changed for case %d kind %d percentile %v", i, k, p)
}
if v != test.ans[k][j] && !(math.IsNaN(v) && math.IsNaN(test.ans[k][j])) {
t.Errorf("mismatch case %d kind %d percentile %v. Expected: %v, found: %v", i, k, p, test.ans[k][j], v)
}
}
}
}
// panic cases
for _, test := range []struct {
name string
p float64
c CumulantKind
x []float64
w []float64
}{
{
name: "p < 0",
c: Empirical,
p: -1,
},
{
name: "p > 1",
c: Empirical,
p: 2,
},
{
name: "p is NaN",
c: Empirical,
p: math.NaN(),
},
{
name: "len(x) != len(weights)",
c: Empirical,
p: .5,
x: make([]float64, 4),
w: make([]float64, 2),
},
{
name: "x not sorted",
c: Empirical,
p: .5,
x: []float64{3, 2, 1},
},
{
name: "CumulantKind is unknown",
c: CumulantKind(1000),
p: .5,
x: []float64{1, 2, 3},
},
} {
if !panics(func() { Quantile(test.p, test.c, test.x, test.w) }) {
t.Errorf("Quantile did not panic when %s", test.name)
}
}
}
func ExampleStdDev() {
x := []float64{8, 2, -9, 15, 4}
stdev := StdDev(x, nil)
fmt.Printf("The standard deviation of the samples is %.4f\n", stdev)
weights := []float64{2, 2, 6, 7, 1}
weightedStdev := StdDev(x, weights)
fmt.Printf("The weighted standard deviation of the samples is %.4f\n", weightedStdev)
// Output:
// The standard deviation of the samples is 8.8034
// The weighted standard deviation of the samples is 10.5733
}
func ExampleStdErr() {
x := []float64{8, 2, -9, 15, 4}
weights := []float64{2, 2, 6, 7, 1}
mean := Mean(x, weights)
stdev := StdDev(x, weights)
nSamples := floats.Sum(weights)
stdErr := StdErr(stdev, nSamples)
fmt.Printf("The standard deviation is %.4f and there are %g samples, so the mean\nis likely %.4f ± %.4f.", stdev, nSamples, mean, stdErr)
// Output:
// The standard deviation is 10.5733 and there are 18 samples, so the mean
// is likely 4.1667 ± 2.4921.
}
func TestSkew(t *testing.T) {
for i, test := range []struct {
x []float64
weights []float64
ans float64
}{
{
x: []float64{8, 3, 7, 8, 4},
weights: nil,
ans: -0.581456499151665,
},
{
x: []float64{8, 3, 7, 8, 4},
weights: []float64{1, 1, 1, 1, 1},
ans: -0.581456499151665,
},
{
x: []float64{8, 3, 7, 8, 4},
weights: []float64{2, 1, 2, 1, 1},
ans: -1.12066646837198,
},
} {
skew := Skew(test.x, test.weights)
if math.Abs(skew-test.ans) > 1e-14 {
t.Errorf("Skew mismatch case %d. Expected %v, Found %v", i, test.ans, skew)
}
}
if !panics(func() { Skew(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Skew did not panic with x, weights length mismatch")
}
}
func TestSortWeighted(t *testing.T) {
for i, test := range []struct {
x []float64
w []float64
ansx []float64
answ []float64
}{
{
x: []float64{8, 3, 7, 8, 4},
ansx: []float64{3, 4, 7, 8, 8},
},
{
x: []float64{8, 3, 7, 8, 4},
w: []float64{.5, 1, 1, .5, 1},
ansx: []float64{3, 4, 7, 8, 8},
answ: []float64{1, 1, 1, .5, .5},
},
} {
SortWeighted(test.x, test.w)
if !floats.Same(test.x, test.ansx) {
t.Errorf("SortWeighted mismatch case %d. Expected x %v, Found x %v", i, test.ansx, test.x)
}
if !(test.w == nil) && !floats.Same(test.w, test.answ) {
t.Errorf("SortWeighted mismatch case %d. Expected w %v, Found w %v", i, test.answ, test.w)
}
}
if !panics(func() { SortWeighted(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("SortWeighted did not panic with x, weights length mismatch")
}
}
func TestSortWeightedLabeled(t *testing.T) {
for i, test := range []struct {
x []float64
l []bool
w []float64
ansx []float64
ansl []bool
answ []float64
}{
{
x: []float64{8, 3, 7, 8, 4},
ansx: []float64{3, 4, 7, 8, 8},
},
{
x: []float64{8, 3, 7, 8, 4},
w: []float64{.5, 1, 1, .5, 1},
ansx: []float64{3, 4, 7, 8, 8},
answ: []float64{1, 1, 1, .5, .5},
},
{
x: []float64{8, 3, 7, 8, 4},
l: []bool{false, false, true, false, true},
ansx: []float64{3, 4, 7, 8, 8},
ansl: []bool{false, true, true, false, false},
},
{
x: []float64{8, 3, 7, 8, 4},
l: []bool{false, false, true, false, true},
w: []float64{.5, 1, 1, .5, 1},
ansx: []float64{3, 4, 7, 8, 8},
ansl: []bool{false, true, true, false, false},
answ: []float64{1, 1, 1, .5, .5},
},
} {
SortWeightedLabeled(test.x, test.l, test.w)
if !floats.Same(test.x, test.ansx) {
t.Errorf("SortWeightedLabelled mismatch case %d. Expected x %v, Found x %v", i, test.ansx, test.x)
}
if (test.l != nil) && !reflect.DeepEqual(test.l, test.ansl) {
t.Errorf("SortWeightedLabelled mismatch case %d. Expected l %v, Found l %v", i, test.ansl, test.l)
}
if (test.w != nil) && !floats.Same(test.w, test.answ) {
t.Errorf("SortWeightedLabelled mismatch case %d. Expected w %v, Found w %v", i, test.answ, test.w)
}
}
if !panics(func() { SortWeightedLabeled(make([]float64, 3), make([]bool, 2), make([]float64, 3)) }) {
t.Errorf("SortWeighted did not panic with x, labels length mismatch")
}
if !panics(func() { SortWeightedLabeled(make([]float64, 3), make([]bool, 2), nil) }) {
t.Errorf("SortWeighted did not panic with x, labels length mismatch")
}
if !panics(func() { SortWeightedLabeled(make([]float64, 3), make([]bool, 3), make([]float64, 2)) }) {
t.Errorf("SortWeighted did not panic with x, weights length mismatch")
}
if !panics(func() { SortWeightedLabeled(make([]float64, 3), nil, make([]float64, 2)) }) {
t.Errorf("SortWeighted did not panic with x, weights length mismatch")
}
}
func TestVariance(t *testing.T) {
for i, test := range []struct {
x []float64
weights []float64
ans float64
}{
{
x: []float64{8, -3, 7, 8, -4},
weights: nil,
ans: 37.7,
},
{
x: []float64{8, -3, 7, 8, -4},
weights: []float64{1, 1, 1, 1, 1},
ans: 37.7,
},
{
x: []float64{8, 3, 7, 8, 4},
weights: []float64{2, 1, 2, 1, 1},
ans: 4.2857142857142865,
},
{
x: []float64{1, 4, 9},
weights: []float64{1, 1.5, 1},
ans: 13.142857142857146,
},
{
x: []float64{1, 2, 3},
weights: []float64{1, 1.5, 1},
ans: .8,
},
} {
variance := Variance(test.x, test.weights)
if math.Abs(variance-test.ans) > 1e-14 {
t.Errorf("Variance mismatch case %d. Expected %v, Found %v", i, test.ans, variance)
}
}
if !panics(func() { Variance(make([]float64, 3), make([]float64, 2)) }) {
t.Errorf("Variance did not panic with x, weights length mismatch")
}
}
func ExampleVariance() {
x := []float64{8, 2, -9, 15, 4}
variance := Variance(x, nil)
fmt.Printf("The variance of the samples is %.4f\n", variance)
weights := []float64{2, 2, 6, 7, 1}
weightedVariance := Variance(x, weights)
fmt.Printf("The weighted variance of the samples is %.4f\n", weightedVariance)
// Output:
// The variance of the samples is 77.5000
// The weighted variance of the samples is 111.7941
}
func TestStdScore(t *testing.T) {
for i, test := range []struct {
x float64
u float64
s float64
z float64
}{
{
x: 4,
u: -6,
s: 5,
z: 2,
},
{
x: 1,
u: 0,
s: 1,
z: 1,
},
} {
z := StdScore(test.x, test.u, test.s)
if math.Abs(z-test.z) > 1e-14 {
t.Errorf("StdScore mismatch case %d. Expected %v, Found %v", i, test.z, z)
}
}
}