| // Copyright ©2019 The Gonum Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package r3 |
| |
| import ( |
| "math" |
| |
| "gonum.org/v1/gonum/num/quat" |
| ) |
| |
| // Vec is a 3D vector. |
| type Vec struct { |
| X, Y, Z float64 |
| } |
| |
| // Add returns the vector sum of p and q. |
| func (p Vec) Add(q Vec) Vec { |
| p.X += q.X |
| p.Y += q.Y |
| p.Z += q.Z |
| return p |
| } |
| |
| // Sub returns the vector sum of p and -q. |
| func (p Vec) Sub(q Vec) Vec { |
| p.X -= q.X |
| p.Y -= q.Y |
| p.Z -= q.Z |
| return p |
| } |
| |
| // Scale returns the vector p scaled by f. |
| func (p Vec) Scale(f float64) Vec { |
| p.X *= f |
| p.Y *= f |
| p.Z *= f |
| return p |
| } |
| |
| // Dot returns the dot product p·q. |
| func (p Vec) Dot(q Vec) float64 { |
| return p.X*q.X + p.Y*q.Y + p.Z*q.Z |
| } |
| |
| // Cross returns the cross product p×q. |
| func (p Vec) Cross(q Vec) Vec { |
| return Vec{ |
| p.Y*q.Z - p.Z*q.Y, |
| p.Z*q.X - p.X*q.Z, |
| p.X*q.Y - p.Y*q.X, |
| } |
| } |
| |
| // Rotate returns a new vector, rotated by alpha around the provided axis. |
| func (p Vec) Rotate(alpha float64, axis Vec) Vec { |
| return NewRotation(alpha, axis).Rotate(p) |
| } |
| |
| // Norm returns the Euclidean norm of p |
| // |p| = sqrt(p_x^2 + p_y^2 + p_z^2). |
| func Norm(p Vec) float64 { |
| return math.Hypot(p.X, math.Hypot(p.Y, p.Z)) |
| } |
| |
| // Norm returns the Euclidean squared norm of p |
| // |p|^2 = p_x^2 + p_y^2 + p_z^2. |
| func Norm2(p Vec) float64 { |
| return p.X*p.X + p.Y*p.Y + p.Z*p.Z |
| } |
| |
| // Unit returns the unit vector colinear to p. |
| // Unit returns {NaN,NaN,NaN} for the zero vector. |
| func Unit(p Vec) Vec { |
| if p.X == 0 && p.Y == 0 && p.Z == 0 { |
| return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()} |
| } |
| return p.Scale(1 / Norm(p)) |
| } |
| |
| // Cos returns the cosine of the opening angle between p and q. |
| func Cos(p, q Vec) float64 { |
| return p.Dot(q) / (Norm(p) * Norm(q)) |
| } |
| |
| // Box is a 3D bounding box. |
| type Box struct { |
| Min, Max Vec |
| } |
| |
| // TODO: possibly useful additions to the current rotation API: |
| // - create rotations from Euler angles (NewRotationFromEuler?) |
| // - create rotations from rotation matrices (NewRotationFromMatrix?) |
| // - return the equivalent Euler angles from a Rotation |
| // - return the equivalent rotation matrix from a Rotation |
| // |
| // Euler angles have issues (see [1] for a discussion). |
| // We should think carefully before adding them in. |
| // [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ |
| |
| // Rotation describes a rotation in space. |
| type Rotation quat.Number |
| |
| // NewRotation creates a rotation by alpha, around axis. |
| func NewRotation(alpha float64, axis Vec) Rotation { |
| if alpha == 0 { |
| return Rotation{Real: 1} |
| } |
| q := raise(axis) |
| sin, cos := math.Sincos(0.5 * alpha) |
| q = quat.Scale(sin/quat.Abs(q), q) |
| q.Real += cos |
| if len := quat.Abs(q); len != 1 { |
| q = quat.Scale(1/len, q) |
| } |
| |
| return Rotation(q) |
| } |
| |
| // Rotate returns the rotated vector according to the definition of rot. |
| func (r Rotation) Rotate(p Vec) Vec { |
| if r.isIdentity() { |
| return p |
| } |
| qq := quat.Number(r) |
| pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq)) |
| return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag} |
| } |
| |
| func (r Rotation) isIdentity() bool { |
| return r == Rotation{Real: 1} |
| } |
| |
| func raise(p Vec) quat.Number { |
| return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z} |
| } |