blob: 959079c9303fd819a8be166bef2b9f3f85de317c [file] [log] [blame]
// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gen
import (
"errors"
"fmt"
"math/rand"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/simple"
"gonum.org/v1/gonum/stat/sampleuv"
)
// TunableClusteringScaleFree constructs a graph in the destination, dst, of order n.
// The graph is constructed successively starting from an m order graph with one node
// having degree m-1. At each iteration of graph addition, one node is added with m
// additional edges joining existing nodes with probability proportional to the nodes'
// degrees. The edges are formed as a triad with probability, p.
// If src is not nil it is used as the random source, otherwise rand.Float64 and
// rand.Intn are used.
//
// The algorithm is essentially as described in http://arxiv.org/abs/cond-mat/0110452.
func TunableClusteringScaleFree(dst graph.UndirectedBuilder, n, m int, p float64, src *rand.Rand) error {
if p < 0 || p > 1 {
return fmt.Errorf("gen: bad probability: p=%v", p)
}
if n <= m {
return fmt.Errorf("gen: n <= m: n=%v m=%d", n, m)
}
var (
rnd func() float64
rndN func(int) int
)
if src == nil {
rnd = rand.Float64
rndN = rand.Intn
} else {
rnd = src.Float64
rndN = src.Intn
}
// Initial condition.
wt := make([]float64, n)
for u := 0; u < m; u++ {
if !dst.Has(simple.Node(u)) {
dst.AddNode(simple.Node(u))
}
// We need to give equal probability for
// adding the first generation of edges.
wt[u] = 1
}
ws := sampleuv.NewWeighted(wt, src)
for i := range wt {
// These weights will organically grow
// after the first growth iteration.
wt[i] = 0
}
// Growth.
for v := m; v < n; v++ {
var u int
pa:
for i := 0; i < m; i++ {
// Triad formation.
if i != 0 && rnd() < p {
for _, w := range permute(dst.From(simple.Node(u)), rndN) {
wid := w.ID()
if wid == int64(v) || dst.HasEdgeBetween(w, simple.Node(v)) {
continue
}
dst.SetEdge(simple.Edge{F: w, T: simple.Node(v), W: 1})
wt[wid]++
wt[v]++
continue pa
}
}
// Preferential attachment.
for {
var ok bool
u, ok = ws.Take()
if !ok {
return errors.New("gen: depleted distribution")
}
if u == v || dst.HasEdgeBetween(simple.Node(u), simple.Node(v)) {
continue
}
dst.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
wt[u]++
wt[v]++
break
}
}
ws.ReweightAll(wt)
}
return nil
}
func permute(n []graph.Node, rnd func(int) int) []graph.Node {
for i := range n[:len(n)-1] {
j := rnd(len(n)-i) + i
n[i], n[j] = n[j], n[i]
}
return n
}
// PreferentialAttachment constructs a graph in the destination, dst, of order n.
// The graph is constructed successively starting from an m order graph with one
// node having degree m-1. At each iteration of graph addition, one node is added
// with m additional edges joining existing nodes with probability proportional
// to the nodes' degrees. If src is not nil it is used as the random source,
// otherwise rand.Float64 is used.
//
// The algorithm is essentially as described in http://arxiv.org/abs/cond-mat/0110452
// after 10.1126/science.286.5439.509.
func PreferentialAttachment(dst graph.UndirectedBuilder, n, m int, src *rand.Rand) error {
if n <= m {
return fmt.Errorf("gen: n <= m: n=%v m=%d", n, m)
}
// Initial condition.
wt := make([]float64, n)
for u := 0; u < m; u++ {
if !dst.Has(simple.Node(u)) {
dst.AddNode(simple.Node(u))
}
// We need to give equal probability for
// adding the first generation of edges.
wt[u] = 1
}
ws := sampleuv.NewWeighted(wt, src)
for i := range wt {
// These weights will organically grow
// after the first growth iteration.
wt[i] = 0
}
// Growth.
for v := m; v < n; v++ {
for i := 0; i < m; i++ {
// Preferential attachment.
u, ok := ws.Take()
if !ok {
return errors.New("gen: depleted distribution")
}
dst.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
wt[u]++
wt[v]++
}
ws.ReweightAll(wt)
}
return nil
}