blob: 8c963c914a7dfa5a2e813a98a249200c02019260 [file] [log] [blame]
package radix
import (
"sort"
"strings"
)
// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn func(s string, v interface{}) bool
// leafNode is used to represent a value
type leafNode struct {
key string
val interface{}
}
// edge is used to represent an edge node
type edge struct {
label byte
node *node
}
type node struct {
// leaf is used to store possible leaf
leaf *leafNode
// prefix is the common prefix we ignore
prefix string
// Edges should be stored in-order for iteration.
// We avoid a fully materialized slice to save memory,
// since in most cases we expect to be sparse
edges edges
}
func (n *node) isLeaf() bool {
return n.leaf != nil
}
func (n *node) addEdge(e edge) {
n.edges = append(n.edges, e)
n.edges.Sort()
}
func (n *node) replaceEdge(e edge) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
if idx < num && n.edges[idx].label == e.label {
n.edges[idx].node = e.node
return
}
panic("replacing missing edge")
}
func (n *node) getEdge(label byte) *node {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
return n.edges[idx].node
}
return nil
}
type edges []edge
func (e edges) Len() int {
return len(e)
}
func (e edges) Less(i, j int) bool {
return e[i].label < e[j].label
}
func (e edges) Swap(i, j int) {
e[i], e[j] = e[j], e[i]
}
func (e edges) Sort() {
sort.Sort(e)
}
// Tree implements a radix tree. This can be treated as a
// Dictionary abstract data type. The main advantage over
// a standard hash map is prefix-based lookups and
// ordered iteration,
type Tree struct {
root *node
size int
}
// New returns an empty Tree
func New() *Tree {
return NewFromMap(nil)
}
// NewFromMap returns a new tree containing the keys
// from an existing map
func NewFromMap(m map[string]interface{}) *Tree {
t := &Tree{root: &node{}}
for k, v := range m {
t.Insert(k, v)
}
return t
}
// Len is used to return the number of elements in the tree
func (t *Tree) Len() int {
return t.size
}
// longestPrefix finds the length of the shared prefix
// of two strings
func longestPrefix(k1, k2 string) int {
max := len(k1)
if l := len(k2); l < max {
max = l
}
var i int
for i = 0; i < max; i++ {
if k1[i] != k2[i] {
break
}
}
return i
}
// Insert is used to add a newentry or update
// an existing entry. Returns if updated.
func (t *Tree) Insert(s string, v interface{}) (interface{}, bool) {
var parent *node
n := t.root
search := s
for {
// Handle key exhaution
if len(search) == 0 {
if n.isLeaf() {
old := n.leaf.val
n.leaf.val = v
return old, true
} else {
n.leaf = &leafNode{
key: s,
val: v,
}
t.size++
return nil, false
}
}
// Look for the edge
parent = n
n = n.getEdge(search[0])
// No edge, create one
if n == nil {
e := edge{
label: search[0],
node: &node{
leaf: &leafNode{
key: s,
val: v,
},
prefix: search,
},
}
parent.addEdge(e)
t.size++
return nil, false
}
// Determine longest prefix of the search key on match
commonPrefix := longestPrefix(search, n.prefix)
if commonPrefix == len(n.prefix) {
search = search[commonPrefix:]
continue
}
// Split the node
t.size++
child := &node{
prefix: search[:commonPrefix],
}
parent.replaceEdge(edge{
label: search[0],
node: child,
})
// Restore the existing node
child.addEdge(edge{
label: n.prefix[commonPrefix],
node: n,
})
n.prefix = n.prefix[commonPrefix:]
// Create a new leaf node
leaf := &leafNode{
key: s,
val: v,
}
// If the new key is a subset, add to to this node
search = search[commonPrefix:]
if len(search) == 0 {
child.leaf = leaf
return nil, false
}
// Create a new edge for the node
child.addEdge(edge{
label: search[0],
node: &node{
leaf: leaf,
prefix: search,
},
})
return nil, false
}
return nil, false
}
// Delete is used to delete a key, returning the previous
// value and if it was deleted
func (t *Tree) Delete(s string) (interface{}, bool) {
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if !n.isLeaf() {
break
}
goto DELETE
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return nil, false
DELETE:
// Delete the leaf
leaf := n.leaf
n.leaf = nil
t.size--
// Check if we should merge this node
if len(n.edges) == 1 {
e := n.edges[0]
child := e.node
n.prefix = n.prefix + child.prefix
n.leaf = child.leaf
n.edges = child.edges
}
return leaf.val, true
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Tree) Get(s string) (interface{}, bool) {
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if n.isLeaf() {
return n.leaf.val, true
}
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return nil, false
}
// LongestPrefix is like Get, but instead of an
// exact match, it will return the longest prefix match.
func (t *Tree) LongestPrefix(s string) (string, interface{}, bool) {
var last *leafNode
n := t.root
search := s
for {
// Look for a leaf node
if n.isLeaf() {
last = n.leaf
}
// Check for key exhaution
if len(search) == 0 {
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
if last != nil {
return last.key, last.val, true
}
return "", nil, false
}
// Minimum is used to return the minimum value in the tree
func (t *Tree) Minimum() (string, interface{}, bool) {
n := t.root
for {
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
if len(n.edges) > 0 {
n = n.edges[0].node
} else {
break
}
}
return "", nil, false
}
// Maximum is used to return the maximum value in the tree
func (t *Tree) Maximum() (string, interface{}, bool) {
n := t.root
for {
if num := len(n.edges); num > 0 {
n = n.edges[num-1].node
continue
}
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
} else {
break
}
}
return "", nil, false
}
// Walk is used to walk the tree
func (t *Tree) Walk(fn WalkFn) {
recursiveWalk(t.root, fn)
}
// WalkPrefix is used to walk the tree under a prefix
func (t *Tree) WalkPrefix(prefix string, fn WalkFn) {
n := t.root
search := prefix
for {
// Check for key exhaution
if len(search) == 0 {
recursiveWalk(n, fn)
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else if strings.HasPrefix(n.prefix, search) {
// Child may be under our search prefix
recursiveWalk(n, fn)
return
} else {
break
}
}
}
// WalkPath is used to walk the tree, but only visiting nodes
// from the root down to a given leaf. Where WalkPrefix walks
// all the entries *under* the given prefix, this walks the
// entries *above* the given prefix.
func (t *Tree) WalkPath(path string, fn WalkFn) {
n := t.root
search := path
for {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return
}
// Check for key exhaution
if len(search) == 0 {
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
return
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
}
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk(n *node, fn WalkFn) bool {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children
for _, e := range n.edges {
if recursiveWalk(e.node, fn) {
return true
}
}
return false
}
// ToMap is used to walk the tree and convert it into a map
func (t *Tree) ToMap() map[string]interface{} {
out := make(map[string]interface{}, t.size)
t.Walk(func(k string, v interface{}) bool {
out[k] = v
return false
})
return out
}