blob: 33c6a7e34533d63e98eb80b2d1900933edbdb096 [file] [log] [blame]
use std::collections::HashMap;
use std::fmt::{self, Display, Formatter};
use std::hash::BuildHasherDefault;
use std::mem::size_of;
use std::{io, ptr};
use bitflags::bitflags;
use crossfont::{
BitmapBuffer, Error as RasterizerError, FontDesc, FontKey, GlyphKey, Rasterize,
RasterizedGlyph, Rasterizer, Size, Slant, Style, Weight,
};
use fnv::FnvHasher;
use log::{error, info};
use unicode_width::UnicodeWidthChar;
use alacritty_terminal::index::Point;
use alacritty_terminal::term::cell::Flags;
use alacritty_terminal::term::color::Rgb;
use alacritty_terminal::term::SizeInfo;
use crate::config::font::{Font, FontDescription};
use crate::config::ui_config::{Delta, UiConfig};
use crate::display::content::RenderableCell;
use crate::gl;
use crate::gl::types::*;
use crate::renderer::rects::{RectRenderer, RenderRect};
pub mod builtin_font;
pub mod rects;
// Shader source.
static TEXT_SHADER_F: &str = include_str!("../../res/text.f.glsl");
static TEXT_SHADER_V: &str = include_str!("../../res/text.v.glsl");
/// `LoadGlyph` allows for copying a rasterized glyph into graphics memory.
pub trait LoadGlyph {
/// Load the rasterized glyph into GPU memory.
fn load_glyph(&mut self, rasterized: &RasterizedGlyph) -> Glyph;
/// Clear any state accumulated from previous loaded glyphs.
///
/// This can, for instance, be used to reset the texture Atlas.
fn clear(&mut self);
}
#[derive(Debug)]
pub enum Error {
ShaderCreation(ShaderCreationError),
}
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
Error::ShaderCreation(err) => err.source(),
}
}
}
impl Display for Error {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Error::ShaderCreation(err) => {
write!(f, "There was an error initializing the shaders: {}", err)
},
}
}
}
impl From<ShaderCreationError> for Error {
fn from(val: ShaderCreationError) -> Self {
Error::ShaderCreation(val)
}
}
/// Text drawing program.
///
/// Uniforms are prefixed with "u", and vertex attributes are prefixed with "a".
#[derive(Debug)]
pub struct TextShaderProgram {
/// Program id.
id: GLuint,
/// Projection scale and offset uniform.
u_projection: GLint,
/// Cell dimensions (pixels).
u_cell_dim: GLint,
/// Background pass flag.
///
/// Rendering is split into two passes; 1 for backgrounds, and one for text.
u_background: GLint,
}
#[derive(Copy, Clone, Debug)]
pub struct Glyph {
tex_id: GLuint,
multicolor: bool,
top: i16,
left: i16,
width: i16,
height: i16,
uv_bot: f32,
uv_left: f32,
uv_width: f32,
uv_height: f32,
}
/// Naïve glyph cache.
///
/// Currently only keyed by `char`, and thus not possible to hold different
/// representations of the same code point.
pub struct GlyphCache {
/// Cache of buffered glyphs.
cache: HashMap<GlyphKey, Glyph, BuildHasherDefault<FnvHasher>>,
/// Rasterizer for loading new glyphs.
rasterizer: Rasterizer,
/// Regular font.
font_key: FontKey,
/// Bold font.
bold_key: FontKey,
/// Italic font.
italic_key: FontKey,
/// Bold italic font.
bold_italic_key: FontKey,
/// Font size.
font_size: crossfont::Size,
/// Glyph offset.
glyph_offset: Delta<i8>,
/// Font metrics.
metrics: crossfont::Metrics,
}
impl GlyphCache {
pub fn new<L>(
mut rasterizer: Rasterizer,
font: &Font,
loader: &mut L,
) -> Result<GlyphCache, crossfont::Error>
where
L: LoadGlyph,
{
let (regular, bold, italic, bold_italic) = Self::compute_font_keys(font, &mut rasterizer)?;
// Need to load at least one glyph for the face before calling metrics.
// The glyph requested here ('m' at the time of writing) has no special
// meaning.
rasterizer.get_glyph(GlyphKey { font_key: regular, character: 'm', size: font.size() })?;
let metrics = rasterizer.metrics(regular, font.size())?;
let mut cache = Self {
cache: HashMap::default(),
rasterizer,
font_size: font.size(),
font_key: regular,
bold_key: bold,
italic_key: italic,
bold_italic_key: bold_italic,
glyph_offset: font.glyph_offset,
metrics,
};
cache.load_common_glyphs(loader);
Ok(cache)
}
fn load_glyphs_for_font<L: LoadGlyph>(&mut self, font: FontKey, loader: &mut L) {
let size = self.font_size;
// Cache all ascii characters.
for i in 32u8..=126u8 {
self.get(GlyphKey { font_key: font, character: i as char, size }, loader, true);
}
}
/// Computes font keys for (Regular, Bold, Italic, Bold Italic).
fn compute_font_keys(
font: &Font,
rasterizer: &mut Rasterizer,
) -> Result<(FontKey, FontKey, FontKey, FontKey), crossfont::Error> {
let size = font.size();
// Load regular font.
let regular_desc = Self::make_desc(font.normal(), Slant::Normal, Weight::Normal);
let regular = Self::load_regular_font(rasterizer, &regular_desc, size)?;
// Helper to load a description if it is not the `regular_desc`.
let mut load_or_regular = |desc: FontDesc| {
if desc == regular_desc {
regular
} else {
rasterizer.load_font(&desc, size).unwrap_or(regular)
}
};
// Load bold font.
let bold_desc = Self::make_desc(&font.bold(), Slant::Normal, Weight::Bold);
let bold = load_or_regular(bold_desc);
// Load italic font.
let italic_desc = Self::make_desc(&font.italic(), Slant::Italic, Weight::Normal);
let italic = load_or_regular(italic_desc);
// Load bold italic font.
let bold_italic_desc = Self::make_desc(&font.bold_italic(), Slant::Italic, Weight::Bold);
let bold_italic = load_or_regular(bold_italic_desc);
Ok((regular, bold, italic, bold_italic))
}
fn load_regular_font(
rasterizer: &mut Rasterizer,
description: &FontDesc,
size: Size,
) -> Result<FontKey, crossfont::Error> {
match rasterizer.load_font(description, size) {
Ok(font) => Ok(font),
Err(err) => {
error!("{}", err);
let fallback_desc =
Self::make_desc(Font::default().normal(), Slant::Normal, Weight::Normal);
rasterizer.load_font(&fallback_desc, size)
},
}
}
fn make_desc(desc: &FontDescription, slant: Slant, weight: Weight) -> FontDesc {
let style = if let Some(ref spec) = desc.style {
Style::Specific(spec.to_owned())
} else {
Style::Description { slant, weight }
};
FontDesc::new(desc.family.clone(), style)
}
/// Get a glyph from the font.
///
/// If the glyph has never been loaded before, it will be rasterized and inserted into the
/// cache.
///
/// # Errors
///
/// This will fail when the glyph could not be rasterized. Usually this is due to the glyph
/// not being present in any font.
fn get<L>(&mut self, glyph_key: GlyphKey, loader: &mut L, show_missing: bool) -> Glyph
where
L: LoadGlyph,
{
// Try to load glyph from cache.
if let Some(glyph) = self.cache.get(&glyph_key) {
return *glyph;
};
// Rasterize the glyph using the built-in font for special characters or the user's font
// for everything else.
let rasterized = builtin_font::builtin_glyph(glyph_key.character, &self.metrics)
.map_or_else(|| self.rasterizer.get_glyph(glyph_key), Ok);
let glyph = match rasterized {
Ok(rasterized) => self.load_glyph(loader, rasterized),
// Load fallback glyph.
Err(RasterizerError::MissingGlyph(rasterized)) if show_missing => {
// Use `\0` as "missing" glyph to cache it only once.
let missing_key = GlyphKey { character: '\0', ..glyph_key };
if let Some(glyph) = self.cache.get(&missing_key) {
*glyph
} else {
// If no missing glyph was loaded yet, insert it as `\0`.
let glyph = self.load_glyph(loader, rasterized);
self.cache.insert(missing_key, glyph);
glyph
}
},
Err(_) => self.load_glyph(loader, Default::default()),
};
// Cache rasterized glyph.
*self.cache.entry(glyph_key).or_insert(glyph)
}
/// Load glyph into the atlas.
///
/// This will apply all transforms defined for the glyph cache to the rasterized glyph before
/// insertion.
fn load_glyph<L>(&self, loader: &mut L, mut glyph: RasterizedGlyph) -> Glyph
where
L: LoadGlyph,
{
glyph.left += i32::from(self.glyph_offset.x);
glyph.top += i32::from(self.glyph_offset.y);
glyph.top -= self.metrics.descent as i32;
// The metrics of zero-width characters are based on rendering
// the character after the current cell, with the anchor at the
// right side of the preceding character. Since we render the
// zero-width characters inside the preceding character, the
// anchor has been moved to the right by one cell.
if glyph.character.width() == Some(0) {
glyph.left += self.metrics.average_advance as i32;
}
// Add glyph to cache.
loader.load_glyph(&glyph)
}
/// Clear currently cached data in both GL and the registry.
pub fn clear_glyph_cache<L: LoadGlyph>(&mut self, loader: &mut L) {
loader.clear();
self.cache = HashMap::default();
self.load_common_glyphs(loader);
}
pub fn update_font_size<L: LoadGlyph>(
&mut self,
font: &Font,
dpr: f64,
loader: &mut L,
) -> Result<(), crossfont::Error> {
// Update dpi scaling.
self.rasterizer.update_dpr(dpr as f32);
// Recompute font keys.
let (regular, bold, italic, bold_italic) =
Self::compute_font_keys(font, &mut self.rasterizer)?;
self.rasterizer.get_glyph(GlyphKey {
font_key: regular,
character: 'm',
size: font.size(),
})?;
let metrics = self.rasterizer.metrics(regular, font.size())?;
info!("Font size changed to {:?} with DPR of {}", font.size(), dpr);
self.font_size = font.size();
self.font_key = regular;
self.bold_key = bold;
self.italic_key = italic;
self.bold_italic_key = bold_italic;
self.metrics = metrics;
self.clear_glyph_cache(loader);
Ok(())
}
pub fn font_metrics(&self) -> crossfont::Metrics {
self.metrics
}
/// Prefetch glyphs that are almost guaranteed to be loaded anyways.
fn load_common_glyphs<L: LoadGlyph>(&mut self, loader: &mut L) {
self.load_glyphs_for_font(self.font_key, loader);
self.load_glyphs_for_font(self.bold_key, loader);
self.load_glyphs_for_font(self.italic_key, loader);
self.load_glyphs_for_font(self.bold_italic_key, loader);
}
/// Calculate font metrics without access to a glyph cache.
pub fn static_metrics(font: Font, dpr: f64) -> Result<crossfont::Metrics, crossfont::Error> {
let mut rasterizer = crossfont::Rasterizer::new(dpr as f32, font.use_thin_strokes)?;
let regular_desc = GlyphCache::make_desc(font.normal(), Slant::Normal, Weight::Normal);
let regular = Self::load_regular_font(&mut rasterizer, &regular_desc, font.size())?;
rasterizer.get_glyph(GlyphKey { font_key: regular, character: 'm', size: font.size() })?;
rasterizer.metrics(regular, font.size())
}
}
// NOTE: These flags must be in sync with their usage in the text.*.glsl shaders.
bitflags! {
#[repr(C)]
struct RenderingGlyphFlags: u8 {
const WIDE_CHAR = 0b0000_0001;
const COLORED = 0b0000_0010;
}
}
#[derive(Debug)]
#[repr(C)]
struct InstanceData {
// Coords.
col: u16,
row: u16,
// Glyph offset.
left: i16,
top: i16,
// Glyph size.
width: i16,
height: i16,
// UV offset.
uv_left: f32,
uv_bot: f32,
// uv scale.
uv_width: f32,
uv_height: f32,
// Color.
r: u8,
g: u8,
b: u8,
// Cell flags like multicolor or fullwidth character.
cell_flags: RenderingGlyphFlags,
// Background color.
bg_r: u8,
bg_g: u8,
bg_b: u8,
bg_a: u8,
}
#[derive(Debug)]
pub struct QuadRenderer {
program: TextShaderProgram,
vao: GLuint,
ebo: GLuint,
vbo_instance: GLuint,
atlas: Vec<Atlas>,
current_atlas: usize,
active_tex: GLuint,
batch: Batch,
rect_renderer: RectRenderer,
}
#[derive(Debug)]
pub struct RenderApi<'a> {
active_tex: &'a mut GLuint,
batch: &'a mut Batch,
atlas: &'a mut Vec<Atlas>,
current_atlas: &'a mut usize,
program: &'a mut TextShaderProgram,
config: &'a UiConfig,
}
#[derive(Debug)]
pub struct LoaderApi<'a> {
active_tex: &'a mut GLuint,
atlas: &'a mut Vec<Atlas>,
current_atlas: &'a mut usize,
}
#[derive(Debug, Default)]
pub struct Batch {
tex: GLuint,
instances: Vec<InstanceData>,
}
impl Batch {
#[inline]
pub fn new() -> Self {
Self { tex: 0, instances: Vec::with_capacity(BATCH_MAX) }
}
pub fn add_item(&mut self, cell: &RenderableCell, glyph: &Glyph) {
if self.is_empty() {
self.tex = glyph.tex_id;
}
let mut cell_flags = RenderingGlyphFlags::empty();
cell_flags.set(RenderingGlyphFlags::COLORED, glyph.multicolor);
cell_flags.set(RenderingGlyphFlags::WIDE_CHAR, cell.flags.contains(Flags::WIDE_CHAR));
self.instances.push(InstanceData {
col: cell.point.column.0 as u16,
row: cell.point.line as u16,
top: glyph.top,
left: glyph.left,
width: glyph.width,
height: glyph.height,
uv_bot: glyph.uv_bot,
uv_left: glyph.uv_left,
uv_width: glyph.uv_width,
uv_height: glyph.uv_height,
r: cell.fg.r,
g: cell.fg.g,
b: cell.fg.b,
cell_flags,
bg_r: cell.bg.r,
bg_g: cell.bg.g,
bg_b: cell.bg.b,
bg_a: (cell.bg_alpha * 255.0) as u8,
});
}
#[inline]
pub fn full(&self) -> bool {
self.capacity() == self.len()
}
#[inline]
pub fn len(&self) -> usize {
self.instances.len()
}
#[inline]
pub fn capacity(&self) -> usize {
BATCH_MAX
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
pub fn size(&self) -> usize {
self.len() * size_of::<InstanceData>()
}
pub fn clear(&mut self) {
self.tex = 0;
self.instances.clear();
}
}
/// Maximum items to be drawn in a batch.
const BATCH_MAX: usize = 0x1_0000;
const ATLAS_SIZE: i32 = 1024;
impl QuadRenderer {
pub fn new() -> Result<QuadRenderer, Error> {
let program = TextShaderProgram::new()?;
let mut vao: GLuint = 0;
let mut ebo: GLuint = 0;
let mut vbo_instance: GLuint = 0;
unsafe {
gl::Enable(gl::BLEND);
gl::BlendFunc(gl::SRC1_COLOR, gl::ONE_MINUS_SRC1_COLOR);
gl::Enable(gl::MULTISAMPLE);
// Disable depth mask, as the renderer never uses depth tests.
gl::DepthMask(gl::FALSE);
gl::GenVertexArrays(1, &mut vao);
gl::GenBuffers(1, &mut ebo);
gl::GenBuffers(1, &mut vbo_instance);
gl::BindVertexArray(vao);
// ---------------------
// Set up element buffer
// ---------------------
let indices: [u32; 6] = [0, 1, 3, 1, 2, 3];
gl::BindBuffer(gl::ELEMENT_ARRAY_BUFFER, ebo);
gl::BufferData(
gl::ELEMENT_ARRAY_BUFFER,
(6 * size_of::<u32>()) as isize,
indices.as_ptr() as *const _,
gl::STATIC_DRAW,
);
// ----------------------------
// Setup vertex instance buffer
// ----------------------------
gl::BindBuffer(gl::ARRAY_BUFFER, vbo_instance);
gl::BufferData(
gl::ARRAY_BUFFER,
(BATCH_MAX * size_of::<InstanceData>()) as isize,
ptr::null(),
gl::STREAM_DRAW,
);
let mut index = 0;
let mut size = 0;
macro_rules! add_attr {
($count:expr, $gl_type:expr, $type:ty) => {
gl::VertexAttribPointer(
index,
$count,
$gl_type,
gl::FALSE,
size_of::<InstanceData>() as i32,
size as *const _,
);
gl::EnableVertexAttribArray(index);
gl::VertexAttribDivisor(index, 1);
#[allow(unused_assignments)]
{
size += $count * size_of::<$type>();
index += 1;
}
};
}
// Coords.
add_attr!(2, gl::UNSIGNED_SHORT, u16);
// Glyph offset and size.
add_attr!(4, gl::SHORT, i16);
// UV offset.
add_attr!(4, gl::FLOAT, f32);
// Color and cell flags.
//
// These are packed together because of an OpenGL driver issue on macOS, which caused a
// `vec3(u8)` text color and a `u8` cell flags to increase the rendering time by a
// huge margin.
add_attr!(4, gl::UNSIGNED_BYTE, u8);
// Background color.
add_attr!(4, gl::UNSIGNED_BYTE, u8);
// Cleanup.
gl::BindVertexArray(0);
gl::BindBuffer(gl::ARRAY_BUFFER, 0);
gl::BindBuffer(gl::ELEMENT_ARRAY_BUFFER, 0);
}
let mut renderer = Self {
program,
rect_renderer: RectRenderer::new()?,
vao,
ebo,
vbo_instance,
atlas: Vec::new(),
current_atlas: 0,
active_tex: 0,
batch: Batch::new(),
};
let atlas = Atlas::new(ATLAS_SIZE);
renderer.atlas.push(atlas);
Ok(renderer)
}
/// Draw all rectangles simultaneously to prevent excessive program swaps.
pub fn draw_rects(&mut self, size_info: &SizeInfo, rects: Vec<RenderRect>) {
if rects.is_empty() {
return;
}
// Prepare rect rendering state.
unsafe {
// Remove padding from viewport.
gl::Viewport(0, 0, size_info.width() as i32, size_info.height() as i32);
gl::BlendFuncSeparate(gl::SRC_ALPHA, gl::ONE_MINUS_SRC_ALPHA, gl::SRC_ALPHA, gl::ONE);
}
self.rect_renderer.draw(size_info, rects);
// Activate regular state again.
unsafe {
// Reset blending strategy.
gl::BlendFunc(gl::SRC1_COLOR, gl::ONE_MINUS_SRC1_COLOR);
// Restore viewport with padding.
self.set_viewport(size_info);
}
}
pub fn with_api<F, T>(&mut self, config: &UiConfig, props: &SizeInfo, func: F) -> T
where
F: FnOnce(RenderApi<'_>) -> T,
{
unsafe {
gl::UseProgram(self.program.id);
self.program.set_term_uniforms(props);
gl::BindVertexArray(self.vao);
gl::BindBuffer(gl::ELEMENT_ARRAY_BUFFER, self.ebo);
gl::BindBuffer(gl::ARRAY_BUFFER, self.vbo_instance);
gl::ActiveTexture(gl::TEXTURE0);
}
let res = func(RenderApi {
active_tex: &mut self.active_tex,
batch: &mut self.batch,
atlas: &mut self.atlas,
current_atlas: &mut self.current_atlas,
program: &mut self.program,
config,
});
unsafe {
gl::BindBuffer(gl::ELEMENT_ARRAY_BUFFER, 0);
gl::BindBuffer(gl::ARRAY_BUFFER, 0);
gl::BindVertexArray(0);
gl::UseProgram(0);
}
res
}
pub fn with_loader<F, T>(&mut self, func: F) -> T
where
F: FnOnce(LoaderApi<'_>) -> T,
{
unsafe {
gl::ActiveTexture(gl::TEXTURE0);
}
func(LoaderApi {
active_tex: &mut self.active_tex,
atlas: &mut self.atlas,
current_atlas: &mut self.current_atlas,
})
}
pub fn resize(&self, size: &SizeInfo) {
unsafe {
self.set_viewport(size);
// Update projection.
gl::UseProgram(self.program.id);
self.program.update_projection(
size.width(),
size.height(),
size.padding_x(),
size.padding_y(),
);
gl::UseProgram(0);
}
}
/// Set the viewport for cell rendering.
#[inline]
pub fn set_viewport(&self, size: &SizeInfo) {
unsafe {
gl::Viewport(
size.padding_x() as i32,
size.padding_y() as i32,
size.width() as i32 - 2 * size.padding_x() as i32,
size.height() as i32 - 2 * size.padding_y() as i32,
);
}
}
}
impl Drop for QuadRenderer {
fn drop(&mut self) {
unsafe {
gl::DeleteBuffers(1, &self.vbo_instance);
gl::DeleteBuffers(1, &self.ebo);
gl::DeleteVertexArrays(1, &self.vao);
}
}
}
impl<'a> RenderApi<'a> {
pub fn clear(&self, color: Rgb) {
unsafe {
let alpha = self.config.window_opacity();
gl::ClearColor(
(f32::from(color.r) / 255.0).min(1.0) * alpha,
(f32::from(color.g) / 255.0).min(1.0) * alpha,
(f32::from(color.b) / 255.0).min(1.0) * alpha,
alpha,
);
gl::Clear(gl::COLOR_BUFFER_BIT);
}
}
#[cfg(not(any(target_os = "macos", windows)))]
pub fn finish(&self) {
unsafe {
gl::Finish();
}
}
fn render_batch(&mut self) {
unsafe {
gl::BufferSubData(
gl::ARRAY_BUFFER,
0,
self.batch.size() as isize,
self.batch.instances.as_ptr() as *const _,
);
}
// Bind texture if necessary.
if *self.active_tex != self.batch.tex {
unsafe {
gl::BindTexture(gl::TEXTURE_2D, self.batch.tex);
}
*self.active_tex = self.batch.tex;
}
unsafe {
self.program.set_background_pass(true);
gl::DrawElementsInstanced(
gl::TRIANGLES,
6,
gl::UNSIGNED_INT,
ptr::null(),
self.batch.len() as GLsizei,
);
self.program.set_background_pass(false);
gl::DrawElementsInstanced(
gl::TRIANGLES,
6,
gl::UNSIGNED_INT,
ptr::null(),
self.batch.len() as GLsizei,
);
}
self.batch.clear();
}
/// Draw a string in a variable location. Used for printing the render timer, warnings and
/// errors.
pub fn draw_string(
&mut self,
glyph_cache: &mut GlyphCache,
point: Point<usize>,
fg: Rgb,
bg: Rgb,
string: &str,
) {
let cells = string
.chars()
.enumerate()
.map(|(i, character)| RenderableCell {
point: Point::new(point.line, point.column + i),
character,
zerowidth: None,
flags: Flags::empty(),
bg_alpha: 1.0,
fg,
bg,
})
.collect::<Vec<_>>();
for cell in cells {
self.draw_cell(cell, glyph_cache);
}
}
#[inline]
fn add_render_item(&mut self, cell: &RenderableCell, glyph: &Glyph) {
// Flush batch if tex changing.
if !self.batch.is_empty() && self.batch.tex != glyph.tex_id {
self.render_batch();
}
self.batch.add_item(cell, glyph);
// Render batch and clear if it's full.
if self.batch.full() {
self.render_batch();
}
}
pub fn draw_cell(&mut self, mut cell: RenderableCell, glyph_cache: &mut GlyphCache) {
// Get font key for cell.
let font_key = match cell.flags & Flags::BOLD_ITALIC {
Flags::BOLD_ITALIC => glyph_cache.bold_italic_key,
Flags::ITALIC => glyph_cache.italic_key,
Flags::BOLD => glyph_cache.bold_key,
_ => glyph_cache.font_key,
};
// Ignore hidden cells and render tabs as spaces to prevent font issues.
let hidden = cell.flags.contains(Flags::HIDDEN);
if cell.character == '\t' || hidden {
cell.character = ' ';
}
let mut glyph_key =
GlyphKey { font_key, size: glyph_cache.font_size, character: cell.character };
// Add cell to batch.
let glyph = glyph_cache.get(glyph_key, self, true);
self.add_render_item(&cell, &glyph);
// Render visible zero-width characters.
if let Some(zerowidth) = cell.zerowidth.take().filter(|_| !hidden) {
for character in zerowidth {
glyph_key.character = character;
let glyph = glyph_cache.get(glyph_key, self, false);
self.add_render_item(&cell, &glyph);
}
}
}
}
/// Load a glyph into a texture atlas.
///
/// If the current atlas is full, a new one will be created.
#[inline]
fn load_glyph(
active_tex: &mut GLuint,
atlas: &mut Vec<Atlas>,
current_atlas: &mut usize,
rasterized: &RasterizedGlyph,
) -> Glyph {
// At least one atlas is guaranteed to be in the `self.atlas` list; thus
// the unwrap.
match atlas[*current_atlas].insert(rasterized, active_tex) {
Ok(glyph) => glyph,
Err(AtlasInsertError::Full) => {
*current_atlas += 1;
if *current_atlas == atlas.len() {
let new = Atlas::new(ATLAS_SIZE);
*active_tex = 0; // Atlas::new binds a texture. Ugh this is sloppy.
atlas.push(new);
}
load_glyph(active_tex, atlas, current_atlas, rasterized)
},
Err(AtlasInsertError::GlyphTooLarge) => Glyph {
tex_id: atlas[*current_atlas].id,
multicolor: false,
top: 0,
left: 0,
width: 0,
height: 0,
uv_bot: 0.,
uv_left: 0.,
uv_width: 0.,
uv_height: 0.,
},
}
}
#[inline]
fn clear_atlas(atlas: &mut Vec<Atlas>, current_atlas: &mut usize) {
for atlas in atlas.iter_mut() {
atlas.clear();
}
*current_atlas = 0;
}
impl<'a> LoadGlyph for LoaderApi<'a> {
fn load_glyph(&mut self, rasterized: &RasterizedGlyph) -> Glyph {
load_glyph(self.active_tex, self.atlas, self.current_atlas, rasterized)
}
fn clear(&mut self) {
clear_atlas(self.atlas, self.current_atlas)
}
}
impl<'a> LoadGlyph for RenderApi<'a> {
fn load_glyph(&mut self, rasterized: &RasterizedGlyph) -> Glyph {
load_glyph(self.active_tex, self.atlas, self.current_atlas, rasterized)
}
fn clear(&mut self) {
clear_atlas(self.atlas, self.current_atlas)
}
}
impl<'a> Drop for RenderApi<'a> {
fn drop(&mut self) {
if !self.batch.is_empty() {
self.render_batch();
}
}
}
impl TextShaderProgram {
pub fn new() -> Result<TextShaderProgram, ShaderCreationError> {
let vertex_shader = create_shader(gl::VERTEX_SHADER, TEXT_SHADER_V)?;
let fragment_shader = create_shader(gl::FRAGMENT_SHADER, TEXT_SHADER_F)?;
let program = create_program(vertex_shader, fragment_shader)?;
unsafe {
gl::DeleteShader(fragment_shader);
gl::DeleteShader(vertex_shader);
gl::UseProgram(program);
}
macro_rules! cptr {
($thing:expr) => {
$thing.as_ptr() as *const _
};
}
macro_rules! assert_uniform_valid {
($uniform:expr) => {
assert!($uniform != gl::INVALID_VALUE as i32);
assert!($uniform != gl::INVALID_OPERATION as i32);
};
( $( $uniform:expr ),* ) => {
$( assert_uniform_valid!($uniform); )*
};
}
// get uniform locations
let (projection, cell_dim, background) = unsafe {
(
gl::GetUniformLocation(program, cptr!(b"projection\0")),
gl::GetUniformLocation(program, cptr!(b"cellDim\0")),
gl::GetUniformLocation(program, cptr!(b"backgroundPass\0")),
)
};
assert_uniform_valid!(projection, cell_dim, background);
let shader = Self {
id: program,
u_projection: projection,
u_cell_dim: cell_dim,
u_background: background,
};
unsafe {
gl::UseProgram(0);
}
Ok(shader)
}
fn update_projection(&self, width: f32, height: f32, padding_x: f32, padding_y: f32) {
// Bounds check.
if (width as u32) < (2 * padding_x as u32) || (height as u32) < (2 * padding_y as u32) {
return;
}
// Compute scale and offset factors, from pixel to ndc space. Y is inverted.
// [0, width - 2 * padding_x] to [-1, 1]
// [height - 2 * padding_y, 0] to [-1, 1]
let scale_x = 2. / (width - 2. * padding_x);
let scale_y = -2. / (height - 2. * padding_y);
let offset_x = -1.;
let offset_y = 1.;
unsafe {
gl::Uniform4f(self.u_projection, offset_x, offset_y, scale_x, scale_y);
}
}
fn set_term_uniforms(&self, props: &SizeInfo) {
unsafe {
gl::Uniform2f(self.u_cell_dim, props.cell_width(), props.cell_height());
}
}
fn set_background_pass(&self, background_pass: bool) {
let value = if background_pass { 1 } else { 0 };
unsafe {
gl::Uniform1i(self.u_background, value);
}
}
}
impl Drop for TextShaderProgram {
fn drop(&mut self) {
unsafe {
gl::DeleteProgram(self.id);
}
}
}
pub fn create_program(vertex: GLuint, fragment: GLuint) -> Result<GLuint, ShaderCreationError> {
unsafe {
let program = gl::CreateProgram();
gl::AttachShader(program, vertex);
gl::AttachShader(program, fragment);
gl::LinkProgram(program);
let mut success: GLint = 0;
gl::GetProgramiv(program, gl::LINK_STATUS, &mut success);
if success == i32::from(gl::TRUE) {
Ok(program)
} else {
Err(ShaderCreationError::Link(get_program_info_log(program)))
}
}
}
pub fn create_shader(kind: GLenum, source: &'static str) -> Result<GLuint, ShaderCreationError> {
let len: [GLint; 1] = [source.len() as GLint];
let shader = unsafe {
let shader = gl::CreateShader(kind);
gl::ShaderSource(shader, 1, &(source.as_ptr() as *const _), len.as_ptr());
gl::CompileShader(shader);
shader
};
let mut success: GLint = 0;
unsafe {
gl::GetShaderiv(shader, gl::COMPILE_STATUS, &mut success);
}
if success == GLint::from(gl::TRUE) {
Ok(shader)
} else {
// Read log.
let log = get_shader_info_log(shader);
// Cleanup.
unsafe {
gl::DeleteShader(shader);
}
Err(ShaderCreationError::Compile(log))
}
}
fn get_program_info_log(program: GLuint) -> String {
// Get expected log length.
let mut max_length: GLint = 0;
unsafe {
gl::GetProgramiv(program, gl::INFO_LOG_LENGTH, &mut max_length);
}
// Read the info log.
let mut actual_length: GLint = 0;
let mut buf: Vec<u8> = Vec::with_capacity(max_length as usize);
unsafe {
gl::GetProgramInfoLog(program, max_length, &mut actual_length, buf.as_mut_ptr() as *mut _);
}
// Build a string.
unsafe {
buf.set_len(actual_length as usize);
}
// XXX should we expect OpenGL to return garbage?
String::from_utf8(buf).unwrap()
}
fn get_shader_info_log(shader: GLuint) -> String {
// Get expected log length.
let mut max_length: GLint = 0;
unsafe {
gl::GetShaderiv(shader, gl::INFO_LOG_LENGTH, &mut max_length);
}
// Read the info log.
let mut actual_length: GLint = 0;
let mut buf: Vec<u8> = Vec::with_capacity(max_length as usize);
unsafe {
gl::GetShaderInfoLog(shader, max_length, &mut actual_length, buf.as_mut_ptr() as *mut _);
}
// Build a string.
unsafe {
buf.set_len(actual_length as usize);
}
// XXX should we expect OpenGL to return garbage?
String::from_utf8(buf).unwrap()
}
#[derive(Debug)]
pub enum ShaderCreationError {
/// Error reading file.
Io(io::Error),
/// Error compiling shader.
Compile(String),
/// Problem linking.
Link(String),
}
impl std::error::Error for ShaderCreationError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
ShaderCreationError::Io(err) => err.source(),
_ => None,
}
}
}
impl Display for ShaderCreationError {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
ShaderCreationError::Io(err) => write!(f, "Unable to read shader: {}", err),
ShaderCreationError::Compile(log) => {
write!(f, "Failed compiling shader: {}", log)
},
ShaderCreationError::Link(log) => write!(f, "Failed linking shader: {}", log),
}
}
}
impl From<io::Error> for ShaderCreationError {
fn from(val: io::Error) -> Self {
ShaderCreationError::Io(val)
}
}
/// Manages a single texture atlas.
///
/// The strategy for filling an atlas looks roughly like this:
///
/// ```text
/// (width, height)
/// ┌─────┬─────┬─────┬─────┬─────┐
/// │ 10 │ │ │ │ │ <- Empty spaces; can be filled while
/// │ │ │ │ │ │ glyph_height < height - row_baseline
/// ├─────┼─────┼─────┼─────┼─────┤
/// │ 5 │ 6 │ 7 │ 8 │ 9 │
/// │ │ │ │ │ │
/// ├─────┼─────┼─────┼─────┴─────┤ <- Row height is tallest glyph in row; this is
/// │ 1 │ 2 │ 3 │ 4 │ used as the baseline for the following row.
/// │ │ │ │ │ <- Row considered full when next glyph doesn't
/// └─────┴─────┴─────┴───────────┘ fit in the row.
/// (0, 0) x->
/// ```
#[derive(Debug)]
struct Atlas {
/// Texture id for this atlas.
id: GLuint,
/// Width of atlas.
width: i32,
/// Height of atlas.
height: i32,
/// Left-most free pixel in a row.
///
/// This is called the extent because it is the upper bound of used pixels
/// in a row.
row_extent: i32,
/// Baseline for glyphs in the current row.
row_baseline: i32,
/// Tallest glyph in current row.
///
/// This is used as the advance when end of row is reached.
row_tallest: i32,
}
/// Error that can happen when inserting a texture to the Atlas.
enum AtlasInsertError {
/// Texture atlas is full.
Full,
/// The glyph cannot fit within a single texture.
GlyphTooLarge,
}
impl Atlas {
fn new(size: i32) -> Self {
let mut id: GLuint = 0;
unsafe {
gl::PixelStorei(gl::UNPACK_ALIGNMENT, 1);
gl::GenTextures(1, &mut id);
gl::BindTexture(gl::TEXTURE_2D, id);
// Use RGBA texture for both normal and emoji glyphs, since it has no performance
// impact.
gl::TexImage2D(
gl::TEXTURE_2D,
0,
gl::RGBA as i32,
size,
size,
0,
gl::RGBA,
gl::UNSIGNED_BYTE,
ptr::null(),
);
gl::TexParameteri(gl::TEXTURE_2D, gl::TEXTURE_WRAP_S, gl::CLAMP_TO_EDGE as i32);
gl::TexParameteri(gl::TEXTURE_2D, gl::TEXTURE_WRAP_T, gl::CLAMP_TO_EDGE as i32);
gl::TexParameteri(gl::TEXTURE_2D, gl::TEXTURE_MIN_FILTER, gl::LINEAR as i32);
gl::TexParameteri(gl::TEXTURE_2D, gl::TEXTURE_MAG_FILTER, gl::LINEAR as i32);
gl::BindTexture(gl::TEXTURE_2D, 0);
}
Self { id, width: size, height: size, row_extent: 0, row_baseline: 0, row_tallest: 0 }
}
pub fn clear(&mut self) {
self.row_extent = 0;
self.row_baseline = 0;
self.row_tallest = 0;
}
/// Insert a RasterizedGlyph into the texture atlas.
pub fn insert(
&mut self,
glyph: &RasterizedGlyph,
active_tex: &mut u32,
) -> Result<Glyph, AtlasInsertError> {
if glyph.width > self.width || glyph.height > self.height {
return Err(AtlasInsertError::GlyphTooLarge);
}
// If there's not enough room in current row, go onto next one.
if !self.room_in_row(glyph) {
self.advance_row()?;
}
// If there's still not room, there's nothing that can be done here..
if !self.room_in_row(glyph) {
return Err(AtlasInsertError::Full);
}
// There appears to be room; load the glyph.
Ok(self.insert_inner(glyph, active_tex))
}
/// Insert the glyph without checking for room.
///
/// Internal function for use once atlas has been checked for space. GL
/// errors could still occur at this point if we were checking for them;
/// hence, the Result.
fn insert_inner(&mut self, glyph: &RasterizedGlyph, active_tex: &mut u32) -> Glyph {
let offset_y = self.row_baseline;
let offset_x = self.row_extent;
let height = glyph.height as i32;
let width = glyph.width as i32;
let multicolor;
unsafe {
gl::BindTexture(gl::TEXTURE_2D, self.id);
// Load data into OpenGL.
let (format, buffer) = match &glyph.buffer {
BitmapBuffer::Rgb(buffer) => {
multicolor = false;
(gl::RGB, buffer)
},
BitmapBuffer::Rgba(buffer) => {
multicolor = true;
(gl::RGBA, buffer)
},
};
gl::TexSubImage2D(
gl::TEXTURE_2D,
0,
offset_x,
offset_y,
width,
height,
format,
gl::UNSIGNED_BYTE,
buffer.as_ptr() as *const _,
);
gl::BindTexture(gl::TEXTURE_2D, 0);
*active_tex = 0;
}
// Update Atlas state.
self.row_extent = offset_x + width;
if height > self.row_tallest {
self.row_tallest = height;
}
// Generate UV coordinates.
let uv_bot = offset_y as f32 / self.height as f32;
let uv_left = offset_x as f32 / self.width as f32;
let uv_height = height as f32 / self.height as f32;
let uv_width = width as f32 / self.width as f32;
Glyph {
tex_id: self.id,
multicolor,
top: glyph.top as i16,
left: glyph.left as i16,
width: width as i16,
height: height as i16,
uv_bot,
uv_left,
uv_width,
uv_height,
}
}
/// Check if there's room in the current row for given glyph.
fn room_in_row(&self, raw: &RasterizedGlyph) -> bool {
let next_extent = self.row_extent + raw.width as i32;
let enough_width = next_extent <= self.width;
let enough_height = (raw.height as i32) < (self.height - self.row_baseline);
enough_width && enough_height
}
/// Mark current row as finished and prepare to insert into the next row.
fn advance_row(&mut self) -> Result<(), AtlasInsertError> {
let advance_to = self.row_baseline + self.row_tallest;
if self.height - advance_to <= 0 {
return Err(AtlasInsertError::Full);
}
self.row_baseline = advance_to;
self.row_extent = 0;
self.row_tallest = 0;
Ok(())
}
}
impl Drop for Atlas {
fn drop(&mut self) {
unsafe {
gl::DeleteTextures(1, &self.id);
}
}
}