| /*************************************************************************** |
| * _ _ ____ _ |
| * Project ___| | | | _ \| | |
| * / __| | | | |_) | | |
| * | (__| |_| | _ <| |___ |
| * \___|\___/|_| \_\_____| |
| * |
| * Copyright (C) 2019 - 2022, Michael Forney, <mforney@mforney.org> |
| * |
| * This software is licensed as described in the file COPYING, which |
| * you should have received as part of this distribution. The terms |
| * are also available at https://curl.se/docs/copyright.html. |
| * |
| * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
| * copies of the Software, and permit persons to whom the Software is |
| * furnished to do so, under the terms of the COPYING file. |
| * |
| * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| * KIND, either express or implied. |
| * |
| * SPDX-License-Identifier: curl |
| * |
| ***************************************************************************/ |
| #include "curl_setup.h" |
| |
| #ifdef USE_BEARSSL |
| |
| #include <bearssl.h> |
| |
| #include "bearssl.h" |
| #include "urldata.h" |
| #include "sendf.h" |
| #include "inet_pton.h" |
| #include "vtls.h" |
| #include "connect.h" |
| #include "select.h" |
| #include "multiif.h" |
| #include "curl_printf.h" |
| #include "curl_memory.h" |
| #include "strcase.h" |
| |
| struct x509_context { |
| const br_x509_class *vtable; |
| br_x509_minimal_context minimal; |
| br_x509_decoder_context decoder; |
| bool verifyhost; |
| bool verifypeer; |
| int cert_num; |
| }; |
| |
| struct ssl_backend_data { |
| br_ssl_client_context ctx; |
| struct x509_context x509; |
| unsigned char buf[BR_SSL_BUFSIZE_BIDI]; |
| br_x509_trust_anchor *anchors; |
| size_t anchors_len; |
| const char *protocols[2]; |
| /* SSL client context is active */ |
| bool active; |
| /* size of pending write, yet to be flushed */ |
| size_t pending_write; |
| }; |
| |
| struct cafile_parser { |
| CURLcode err; |
| bool in_cert; |
| br_x509_decoder_context xc; |
| /* array of trust anchors loaded from CAfile */ |
| br_x509_trust_anchor *anchors; |
| size_t anchors_len; |
| /* buffer for DN data */ |
| unsigned char dn[1024]; |
| size_t dn_len; |
| }; |
| |
| #define CAFILE_SOURCE_PATH 1 |
| #define CAFILE_SOURCE_BLOB 2 |
| struct cafile_source { |
| int type; |
| const char *data; |
| size_t len; |
| }; |
| |
| static void append_dn(void *ctx, const void *buf, size_t len) |
| { |
| struct cafile_parser *ca = ctx; |
| |
| if(ca->err != CURLE_OK || !ca->in_cert) |
| return; |
| if(sizeof(ca->dn) - ca->dn_len < len) { |
| ca->err = CURLE_FAILED_INIT; |
| return; |
| } |
| memcpy(ca->dn + ca->dn_len, buf, len); |
| ca->dn_len += len; |
| } |
| |
| static void x509_push(void *ctx, const void *buf, size_t len) |
| { |
| struct cafile_parser *ca = ctx; |
| |
| if(ca->in_cert) |
| br_x509_decoder_push(&ca->xc, buf, len); |
| } |
| |
| static CURLcode load_cafile(struct cafile_source *source, |
| br_x509_trust_anchor **anchors, |
| size_t *anchors_len) |
| { |
| struct cafile_parser ca; |
| br_pem_decoder_context pc; |
| br_x509_trust_anchor *ta; |
| size_t ta_size; |
| br_x509_trust_anchor *new_anchors; |
| size_t new_anchors_len; |
| br_x509_pkey *pkey; |
| FILE *fp = 0; |
| unsigned char buf[BUFSIZ]; |
| const unsigned char *p; |
| const char *name; |
| size_t n, i, pushed; |
| |
| DEBUGASSERT(source->type == CAFILE_SOURCE_PATH |
| || source->type == CAFILE_SOURCE_BLOB); |
| |
| if(source->type == CAFILE_SOURCE_PATH) { |
| fp = fopen(source->data, "rb"); |
| if(!fp) |
| return CURLE_SSL_CACERT_BADFILE; |
| } |
| |
| if(source->type == CAFILE_SOURCE_BLOB && source->len > (size_t)INT_MAX) |
| return CURLE_SSL_CACERT_BADFILE; |
| |
| ca.err = CURLE_OK; |
| ca.in_cert = FALSE; |
| ca.anchors = NULL; |
| ca.anchors_len = 0; |
| br_pem_decoder_init(&pc); |
| br_pem_decoder_setdest(&pc, x509_push, &ca); |
| do { |
| if(source->type == CAFILE_SOURCE_PATH) { |
| n = fread(buf, 1, sizeof(buf), fp); |
| if(n == 0) |
| break; |
| p = buf; |
| } |
| else if(source->type == CAFILE_SOURCE_BLOB) { |
| n = source->len; |
| p = (unsigned char *) source->data; |
| } |
| while(n) { |
| pushed = br_pem_decoder_push(&pc, p, n); |
| if(ca.err) |
| goto fail; |
| p += pushed; |
| n -= pushed; |
| |
| switch(br_pem_decoder_event(&pc)) { |
| case 0: |
| break; |
| case BR_PEM_BEGIN_OBJ: |
| name = br_pem_decoder_name(&pc); |
| if(strcmp(name, "CERTIFICATE") && strcmp(name, "X509 CERTIFICATE")) |
| break; |
| br_x509_decoder_init(&ca.xc, append_dn, &ca); |
| ca.in_cert = TRUE; |
| ca.dn_len = 0; |
| break; |
| case BR_PEM_END_OBJ: |
| if(!ca.in_cert) |
| break; |
| ca.in_cert = FALSE; |
| if(br_x509_decoder_last_error(&ca.xc)) { |
| ca.err = CURLE_SSL_CACERT_BADFILE; |
| goto fail; |
| } |
| /* add trust anchor */ |
| if(ca.anchors_len == SIZE_MAX / sizeof(ca.anchors[0])) { |
| ca.err = CURLE_OUT_OF_MEMORY; |
| goto fail; |
| } |
| new_anchors_len = ca.anchors_len + 1; |
| new_anchors = realloc(ca.anchors, |
| new_anchors_len * sizeof(ca.anchors[0])); |
| if(!new_anchors) { |
| ca.err = CURLE_OUT_OF_MEMORY; |
| goto fail; |
| } |
| ca.anchors = new_anchors; |
| ca.anchors_len = new_anchors_len; |
| ta = &ca.anchors[ca.anchors_len - 1]; |
| ta->dn.data = NULL; |
| ta->flags = 0; |
| if(br_x509_decoder_isCA(&ca.xc)) |
| ta->flags |= BR_X509_TA_CA; |
| pkey = br_x509_decoder_get_pkey(&ca.xc); |
| if(!pkey) { |
| ca.err = CURLE_SSL_CACERT_BADFILE; |
| goto fail; |
| } |
| ta->pkey = *pkey; |
| |
| /* calculate space needed for trust anchor data */ |
| ta_size = ca.dn_len; |
| switch(pkey->key_type) { |
| case BR_KEYTYPE_RSA: |
| ta_size += pkey->key.rsa.nlen + pkey->key.rsa.elen; |
| break; |
| case BR_KEYTYPE_EC: |
| ta_size += pkey->key.ec.qlen; |
| break; |
| default: |
| ca.err = CURLE_FAILED_INIT; |
| goto fail; |
| } |
| |
| /* fill in trust anchor DN and public key data */ |
| ta->dn.data = malloc(ta_size); |
| if(!ta->dn.data) { |
| ca.err = CURLE_OUT_OF_MEMORY; |
| goto fail; |
| } |
| memcpy(ta->dn.data, ca.dn, ca.dn_len); |
| ta->dn.len = ca.dn_len; |
| switch(pkey->key_type) { |
| case BR_KEYTYPE_RSA: |
| ta->pkey.key.rsa.n = ta->dn.data + ta->dn.len; |
| memcpy(ta->pkey.key.rsa.n, pkey->key.rsa.n, pkey->key.rsa.nlen); |
| ta->pkey.key.rsa.e = ta->pkey.key.rsa.n + ta->pkey.key.rsa.nlen; |
| memcpy(ta->pkey.key.rsa.e, pkey->key.rsa.e, pkey->key.rsa.elen); |
| break; |
| case BR_KEYTYPE_EC: |
| ta->pkey.key.ec.q = ta->dn.data + ta->dn.len; |
| memcpy(ta->pkey.key.ec.q, pkey->key.ec.q, pkey->key.ec.qlen); |
| break; |
| } |
| break; |
| default: |
| ca.err = CURLE_SSL_CACERT_BADFILE; |
| goto fail; |
| } |
| } |
| } while(source->type != CAFILE_SOURCE_BLOB); |
| if(fp && ferror(fp)) |
| ca.err = CURLE_READ_ERROR; |
| else if(ca.in_cert) |
| ca.err = CURLE_SSL_CACERT_BADFILE; |
| |
| fail: |
| if(fp) |
| fclose(fp); |
| if(ca.err == CURLE_OK) { |
| *anchors = ca.anchors; |
| *anchors_len = ca.anchors_len; |
| } |
| else { |
| for(i = 0; i < ca.anchors_len; ++i) |
| free(ca.anchors[i].dn.data); |
| free(ca.anchors); |
| } |
| |
| return ca.err; |
| } |
| |
| static void x509_start_chain(const br_x509_class **ctx, |
| const char *server_name) |
| { |
| struct x509_context *x509 = (struct x509_context *)ctx; |
| |
| if(!x509->verifypeer) { |
| x509->cert_num = 0; |
| return; |
| } |
| |
| if(!x509->verifyhost) |
| server_name = NULL; |
| x509->minimal.vtable->start_chain(&x509->minimal.vtable, server_name); |
| } |
| |
| static void x509_start_cert(const br_x509_class **ctx, uint32_t length) |
| { |
| struct x509_context *x509 = (struct x509_context *)ctx; |
| |
| if(!x509->verifypeer) { |
| /* Only decode the first cert in the chain to obtain the public key */ |
| if(x509->cert_num == 0) |
| br_x509_decoder_init(&x509->decoder, NULL, NULL); |
| return; |
| } |
| |
| x509->minimal.vtable->start_cert(&x509->minimal.vtable, length); |
| } |
| |
| static void x509_append(const br_x509_class **ctx, const unsigned char *buf, |
| size_t len) |
| { |
| struct x509_context *x509 = (struct x509_context *)ctx; |
| |
| if(!x509->verifypeer) { |
| if(x509->cert_num == 0) |
| br_x509_decoder_push(&x509->decoder, buf, len); |
| return; |
| } |
| |
| x509->minimal.vtable->append(&x509->minimal.vtable, buf, len); |
| } |
| |
| static void x509_end_cert(const br_x509_class **ctx) |
| { |
| struct x509_context *x509 = (struct x509_context *)ctx; |
| |
| if(!x509->verifypeer) { |
| x509->cert_num++; |
| return; |
| } |
| |
| x509->minimal.vtable->end_cert(&x509->minimal.vtable); |
| } |
| |
| static unsigned x509_end_chain(const br_x509_class **ctx) |
| { |
| struct x509_context *x509 = (struct x509_context *)ctx; |
| |
| if(!x509->verifypeer) { |
| return br_x509_decoder_last_error(&x509->decoder); |
| } |
| |
| return x509->minimal.vtable->end_chain(&x509->minimal.vtable); |
| } |
| |
| static const br_x509_pkey *x509_get_pkey(const br_x509_class *const *ctx, |
| unsigned *usages) |
| { |
| struct x509_context *x509 = (struct x509_context *)ctx; |
| |
| if(!x509->verifypeer) { |
| /* Nothing in the chain is verified, just return the public key of the |
| first certificate and allow its usage for both TLS_RSA_* and |
| TLS_ECDHE_* */ |
| if(usages) |
| *usages = BR_KEYTYPE_KEYX | BR_KEYTYPE_SIGN; |
| return br_x509_decoder_get_pkey(&x509->decoder); |
| } |
| |
| return x509->minimal.vtable->get_pkey(&x509->minimal.vtable, usages); |
| } |
| |
| static const br_x509_class x509_vtable = { |
| sizeof(struct x509_context), |
| x509_start_chain, |
| x509_start_cert, |
| x509_append, |
| x509_end_cert, |
| x509_end_chain, |
| x509_get_pkey |
| }; |
| |
| struct st_cipher { |
| const char *name; /* Cipher suite IANA name. It starts with "TLS_" prefix */ |
| const char *alias_name; /* Alias name is the same as OpenSSL cipher name */ |
| uint16_t num; /* BearSSL cipher suite */ |
| }; |
| |
| /* Macro to initialize st_cipher data structure */ |
| #define CIPHER_DEF(num, alias) { #num, alias, BR_##num } |
| |
| static const struct st_cipher ciphertable[] = { |
| /* RFC 2246 TLS 1.0 */ |
| CIPHER_DEF(TLS_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */ |
| "DES-CBC3-SHA"), |
| |
| /* RFC 3268 TLS 1.0 AES */ |
| CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */ |
| "AES128-SHA"), |
| CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */ |
| "AES256-SHA"), |
| |
| /* RFC 5246 TLS 1.2 */ |
| CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */ |
| "AES128-SHA256"), |
| CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */ |
| "AES256-SHA256"), |
| |
| /* RFC 5288 TLS 1.2 AES GCM */ |
| CIPHER_DEF(TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */ |
| "AES128-GCM-SHA256"), |
| CIPHER_DEF(TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */ |
| "AES256-GCM-SHA384"), |
| |
| /* RFC 4492 TLS 1.0 ECC */ |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */ |
| "ECDH-ECDSA-DES-CBC3-SHA"), |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */ |
| "ECDH-ECDSA-AES128-SHA"), |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */ |
| "ECDH-ECDSA-AES256-SHA"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */ |
| "ECDHE-ECDSA-DES-CBC3-SHA"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */ |
| "ECDHE-ECDSA-AES128-SHA"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */ |
| "ECDHE-ECDSA-AES256-SHA"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */ |
| "ECDH-RSA-DES-CBC3-SHA"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */ |
| "ECDH-RSA-AES128-SHA"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */ |
| "ECDH-RSA-AES256-SHA"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */ |
| "ECDHE-RSA-DES-CBC3-SHA"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */ |
| "ECDHE-RSA-AES128-SHA"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */ |
| "ECDHE-RSA-AES256-SHA"), |
| |
| /* RFC 5289 TLS 1.2 ECC HMAC SHA256/384 */ |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */ |
| "ECDHE-ECDSA-AES128-SHA256"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */ |
| "ECDHE-ECDSA-AES256-SHA384"), |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */ |
| "ECDH-ECDSA-AES128-SHA256"), |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */ |
| "ECDH-ECDSA-AES256-SHA384"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */ |
| "ECDHE-RSA-AES128-SHA256"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */ |
| "ECDHE-RSA-AES256-SHA384"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */ |
| "ECDH-RSA-AES128-SHA256"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */ |
| "ECDH-RSA-AES256-SHA384"), |
| |
| /* RFC 5289 TLS 1.2 GCM */ |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */ |
| "ECDHE-ECDSA-AES128-GCM-SHA256"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */ |
| "ECDHE-ECDSA-AES256-GCM-SHA384"), |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */ |
| "ECDH-ECDSA-AES128-GCM-SHA256"), |
| CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */ |
| "ECDH-ECDSA-AES256-GCM-SHA384"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */ |
| "ECDHE-RSA-AES128-GCM-SHA256"), |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */ |
| "ECDHE-RSA-AES256-GCM-SHA384"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */ |
| "ECDH-RSA-AES128-GCM-SHA256"), |
| CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */ |
| "ECDH-RSA-AES256-GCM-SHA384"), |
| #ifdef BR_TLS_RSA_WITH_AES_128_CCM |
| |
| /* RFC 6655 TLS 1.2 CCM |
| Supported since BearSSL 0.6 */ |
| CIPHER_DEF(TLS_RSA_WITH_AES_128_CCM, /* 0xC09C */ |
| "AES128-CCM"), |
| CIPHER_DEF(TLS_RSA_WITH_AES_256_CCM, /* 0xC09D */ |
| "AES256-CCM"), |
| CIPHER_DEF(TLS_RSA_WITH_AES_128_CCM_8, /* 0xC0A0 */ |
| "AES128-CCM8"), |
| CIPHER_DEF(TLS_RSA_WITH_AES_256_CCM_8, /* 0xC0A1 */ |
| "AES256-CCM8"), |
| |
| /* RFC 7251 TLS 1.2 ECC CCM |
| Supported since BearSSL 0.6 */ |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CCM, /* 0xC0AC */ |
| "ECDHE-ECDSA-AES128-CCM"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CCM, /* 0xC0AD */ |
| "ECDHE-ECDSA-AES256-CCM"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, /* 0xC0AE */ |
| "ECDHE-ECDSA-AES128-CCM8"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8, /* 0xC0AF */ |
| "ECDHE-ECDSA-AES256-CCM8"), |
| #endif |
| |
| /* RFC 7905 TLS 1.2 ChaCha20-Poly1305 |
| Supported since BearSSL 0.2 */ |
| CIPHER_DEF(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */ |
| "ECDHE-RSA-CHACHA20-POLY1305"), |
| CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */ |
| "ECDHE-ECDSA-CHACHA20-POLY1305"), |
| }; |
| |
| #define NUM_OF_CIPHERS (sizeof(ciphertable) / sizeof(ciphertable[0])) |
| #define CIPHER_NAME_BUF_LEN 64 |
| |
| static bool is_separator(char c) |
| { |
| /* Return whether character is a cipher list separator. */ |
| switch(c) { |
| case ' ': |
| case '\t': |
| case ':': |
| case ',': |
| case ';': |
| return true; |
| } |
| return false; |
| } |
| |
| static CURLcode bearssl_set_selected_ciphers(struct Curl_easy *data, |
| br_ssl_engine_context *ssl_eng, |
| const char *ciphers) |
| { |
| uint16_t selected_ciphers[NUM_OF_CIPHERS]; |
| size_t selected_count = 0; |
| char cipher_name[CIPHER_NAME_BUF_LEN]; |
| const char *cipher_start = ciphers; |
| const char *cipher_end; |
| size_t i, j; |
| |
| if(!cipher_start) |
| return CURLE_SSL_CIPHER; |
| |
| while(true) { |
| /* Extract the next cipher name from the ciphers string */ |
| while(is_separator(*cipher_start)) |
| ++cipher_start; |
| if(*cipher_start == '\0') |
| break; |
| cipher_end = cipher_start; |
| while(*cipher_end != '\0' && !is_separator(*cipher_end)) |
| ++cipher_end; |
| j = cipher_end - cipher_start < CIPHER_NAME_BUF_LEN - 1 ? |
| cipher_end - cipher_start : CIPHER_NAME_BUF_LEN - 1; |
| strncpy(cipher_name, cipher_start, j); |
| cipher_name[j] = '\0'; |
| cipher_start = cipher_end; |
| |
| /* Lookup the cipher name in the table of available ciphers. If the cipher |
| name starts with "TLS_" we do the lookup by IANA name. Otherwise, we try |
| to match cipher name by an (OpenSSL) alias. */ |
| if(strncasecompare(cipher_name, "TLS_", 4)) { |
| for(i = 0; i < NUM_OF_CIPHERS && |
| !strcasecompare(cipher_name, ciphertable[i].name); ++i); |
| } |
| else { |
| for(i = 0; i < NUM_OF_CIPHERS && |
| !strcasecompare(cipher_name, ciphertable[i].alias_name); ++i); |
| } |
| if(i == NUM_OF_CIPHERS) { |
| infof(data, "BearSSL: unknown cipher in list: %s", cipher_name); |
| continue; |
| } |
| |
| /* No duplicates allowed */ |
| for(j = 0; j < selected_count && |
| selected_ciphers[j] != ciphertable[i].num; j++); |
| if(j < selected_count) { |
| infof(data, "BearSSL: duplicate cipher in list: %s", cipher_name); |
| continue; |
| } |
| |
| DEBUGASSERT(selected_count < NUM_OF_CIPHERS); |
| selected_ciphers[selected_count] = ciphertable[i].num; |
| ++selected_count; |
| } |
| |
| if(selected_count == 0) { |
| failf(data, "BearSSL: no supported cipher in list"); |
| return CURLE_SSL_CIPHER; |
| } |
| |
| br_ssl_engine_set_suites(ssl_eng, selected_ciphers, selected_count); |
| return CURLE_OK; |
| } |
| |
| static CURLcode bearssl_connect_step1(struct Curl_easy *data, |
| struct connectdata *conn, int sockindex) |
| { |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| const struct curl_blob *ca_info_blob = SSL_CONN_CONFIG(ca_info_blob); |
| const char * const ssl_cafile = |
| /* CURLOPT_CAINFO_BLOB overrides CURLOPT_CAINFO */ |
| (ca_info_blob ? NULL : SSL_CONN_CONFIG(CAfile)); |
| const char *hostname = SSL_HOST_NAME(); |
| const bool verifypeer = SSL_CONN_CONFIG(verifypeer); |
| const bool verifyhost = SSL_CONN_CONFIG(verifyhost); |
| CURLcode ret; |
| unsigned version_min, version_max; |
| #ifdef ENABLE_IPV6 |
| struct in6_addr addr; |
| #else |
| struct in_addr addr; |
| #endif |
| |
| DEBUGASSERT(backend); |
| |
| switch(SSL_CONN_CONFIG(version)) { |
| case CURL_SSLVERSION_SSLv2: |
| failf(data, "BearSSL does not support SSLv2"); |
| return CURLE_SSL_CONNECT_ERROR; |
| case CURL_SSLVERSION_SSLv3: |
| failf(data, "BearSSL does not support SSLv3"); |
| return CURLE_SSL_CONNECT_ERROR; |
| case CURL_SSLVERSION_TLSv1_0: |
| version_min = BR_TLS10; |
| version_max = BR_TLS10; |
| break; |
| case CURL_SSLVERSION_TLSv1_1: |
| version_min = BR_TLS11; |
| version_max = BR_TLS11; |
| break; |
| case CURL_SSLVERSION_TLSv1_2: |
| version_min = BR_TLS12; |
| version_max = BR_TLS12; |
| break; |
| case CURL_SSLVERSION_DEFAULT: |
| case CURL_SSLVERSION_TLSv1: |
| version_min = BR_TLS10; |
| version_max = BR_TLS12; |
| break; |
| default: |
| failf(data, "BearSSL: unknown CURLOPT_SSLVERSION"); |
| return CURLE_SSL_CONNECT_ERROR; |
| } |
| |
| if(ca_info_blob) { |
| struct cafile_source source; |
| source.type = CAFILE_SOURCE_BLOB; |
| source.data = ca_info_blob->data; |
| source.len = ca_info_blob->len; |
| |
| ret = load_cafile(&source, &backend->anchors, &backend->anchors_len); |
| if(ret != CURLE_OK) { |
| if(verifypeer) { |
| failf(data, "error importing CA certificate blob"); |
| return ret; |
| } |
| /* Only warn if no certificate verification is required. */ |
| infof(data, "error importing CA certificate blob, continuing anyway"); |
| } |
| } |
| |
| if(ssl_cafile) { |
| struct cafile_source source; |
| source.type = CAFILE_SOURCE_PATH; |
| source.data = ssl_cafile; |
| source.len = 0; |
| |
| ret = load_cafile(&source, &backend->anchors, &backend->anchors_len); |
| if(ret != CURLE_OK) { |
| if(verifypeer) { |
| failf(data, "error setting certificate verify locations." |
| " CAfile: %s", ssl_cafile); |
| return ret; |
| } |
| infof(data, "error setting certificate verify locations," |
| " continuing anyway:"); |
| } |
| } |
| |
| /* initialize SSL context */ |
| br_ssl_client_init_full(&backend->ctx, &backend->x509.minimal, |
| backend->anchors, backend->anchors_len); |
| br_ssl_engine_set_versions(&backend->ctx.eng, version_min, version_max); |
| br_ssl_engine_set_buffer(&backend->ctx.eng, backend->buf, |
| sizeof(backend->buf), 1); |
| |
| if(SSL_CONN_CONFIG(cipher_list)) { |
| /* Override the ciphers as specified. For the default cipher list see the |
| BearSSL source code of br_ssl_client_init_full() */ |
| ret = bearssl_set_selected_ciphers(data, &backend->ctx.eng, |
| SSL_CONN_CONFIG(cipher_list)); |
| if(ret) |
| return ret; |
| } |
| |
| /* initialize X.509 context */ |
| backend->x509.vtable = &x509_vtable; |
| backend->x509.verifypeer = verifypeer; |
| backend->x509.verifyhost = verifyhost; |
| br_ssl_engine_set_x509(&backend->ctx.eng, &backend->x509.vtable); |
| |
| if(SSL_SET_OPTION(primary.sessionid)) { |
| void *session; |
| |
| Curl_ssl_sessionid_lock(data); |
| if(!Curl_ssl_getsessionid(data, conn, SSL_IS_PROXY() ? TRUE : FALSE, |
| &session, NULL, sockindex)) { |
| br_ssl_engine_set_session_parameters(&backend->ctx.eng, session); |
| infof(data, "BearSSL: re-using session ID"); |
| } |
| Curl_ssl_sessionid_unlock(data); |
| } |
| |
| if(conn->bits.tls_enable_alpn) { |
| int cur = 0; |
| |
| /* NOTE: when adding more protocols here, increase the size of the |
| * protocols array in `struct ssl_backend_data`. |
| */ |
| |
| #ifdef USE_HTTP2 |
| if(data->state.httpwant >= CURL_HTTP_VERSION_2 |
| #ifndef CURL_DISABLE_PROXY |
| && (!SSL_IS_PROXY() || !conn->bits.tunnel_proxy) |
| #endif |
| ) { |
| backend->protocols[cur++] = ALPN_H2; |
| infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_H2); |
| } |
| #endif |
| |
| backend->protocols[cur++] = ALPN_HTTP_1_1; |
| infof(data, VTLS_INFOF_ALPN_OFFER_1STR, ALPN_HTTP_1_1); |
| |
| br_ssl_engine_set_protocol_names(&backend->ctx.eng, |
| backend->protocols, cur); |
| } |
| |
| if((1 == Curl_inet_pton(AF_INET, hostname, &addr)) |
| #ifdef ENABLE_IPV6 |
| || (1 == Curl_inet_pton(AF_INET6, hostname, &addr)) |
| #endif |
| ) { |
| if(verifyhost) { |
| failf(data, "BearSSL: " |
| "host verification of IP address is not supported"); |
| return CURLE_PEER_FAILED_VERIFICATION; |
| } |
| hostname = NULL; |
| } |
| else { |
| char *snihost = Curl_ssl_snihost(data, hostname, NULL); |
| if(!snihost) { |
| failf(data, "Failed to set SNI"); |
| return CURLE_SSL_CONNECT_ERROR; |
| } |
| hostname = snihost; |
| } |
| |
| /* give application a chance to interfere with SSL set up. */ |
| if(data->set.ssl.fsslctx) { |
| Curl_set_in_callback(data, true); |
| ret = (*data->set.ssl.fsslctx)(data, &backend->ctx, |
| data->set.ssl.fsslctxp); |
| Curl_set_in_callback(data, false); |
| if(ret) { |
| failf(data, "BearSSL: error signaled by ssl ctx callback"); |
| return ret; |
| } |
| } |
| |
| if(!br_ssl_client_reset(&backend->ctx, hostname, 1)) |
| return CURLE_FAILED_INIT; |
| backend->active = TRUE; |
| |
| connssl->connecting_state = ssl_connect_2; |
| |
| return CURLE_OK; |
| } |
| |
| static CURLcode bearssl_run_until(struct Curl_easy *data, |
| struct connectdata *conn, int sockindex, |
| unsigned target) |
| { |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| curl_socket_t sockfd = conn->sock[sockindex]; |
| unsigned state; |
| unsigned char *buf; |
| size_t len; |
| ssize_t ret; |
| int err; |
| |
| DEBUGASSERT(backend); |
| |
| for(;;) { |
| state = br_ssl_engine_current_state(&backend->ctx.eng); |
| if(state & BR_SSL_CLOSED) { |
| err = br_ssl_engine_last_error(&backend->ctx.eng); |
| switch(err) { |
| case BR_ERR_OK: |
| /* TLS close notify */ |
| if(connssl->state != ssl_connection_complete) { |
| failf(data, "SSL: connection closed during handshake"); |
| return CURLE_SSL_CONNECT_ERROR; |
| } |
| return CURLE_OK; |
| case BR_ERR_X509_EXPIRED: |
| failf(data, "SSL: X.509 verification: " |
| "certificate is expired or not yet valid"); |
| return CURLE_PEER_FAILED_VERIFICATION; |
| case BR_ERR_X509_BAD_SERVER_NAME: |
| failf(data, "SSL: X.509 verification: " |
| "expected server name was not found in the chain"); |
| return CURLE_PEER_FAILED_VERIFICATION; |
| case BR_ERR_X509_NOT_TRUSTED: |
| failf(data, "SSL: X.509 verification: " |
| "chain could not be linked to a trust anchor"); |
| return CURLE_PEER_FAILED_VERIFICATION; |
| } |
| /* X.509 errors are documented to have the range 32..63 */ |
| if(err >= 32 && err < 64) |
| return CURLE_PEER_FAILED_VERIFICATION; |
| return CURLE_SSL_CONNECT_ERROR; |
| } |
| if(state & target) |
| return CURLE_OK; |
| if(state & BR_SSL_SENDREC) { |
| buf = br_ssl_engine_sendrec_buf(&backend->ctx.eng, &len); |
| ret = swrite(sockfd, buf, len); |
| if(ret == -1) { |
| if(SOCKERRNO == EAGAIN || SOCKERRNO == EWOULDBLOCK) { |
| if(connssl->state != ssl_connection_complete) |
| connssl->connecting_state = ssl_connect_2_writing; |
| return CURLE_AGAIN; |
| } |
| return CURLE_WRITE_ERROR; |
| } |
| br_ssl_engine_sendrec_ack(&backend->ctx.eng, ret); |
| } |
| else if(state & BR_SSL_RECVREC) { |
| buf = br_ssl_engine_recvrec_buf(&backend->ctx.eng, &len); |
| ret = sread(sockfd, buf, len); |
| if(ret == 0) { |
| failf(data, "SSL: EOF without close notify"); |
| return CURLE_READ_ERROR; |
| } |
| if(ret == -1) { |
| if(SOCKERRNO == EAGAIN || SOCKERRNO == EWOULDBLOCK) { |
| if(connssl->state != ssl_connection_complete) |
| connssl->connecting_state = ssl_connect_2_reading; |
| return CURLE_AGAIN; |
| } |
| return CURLE_READ_ERROR; |
| } |
| br_ssl_engine_recvrec_ack(&backend->ctx.eng, ret); |
| } |
| } |
| } |
| |
| static CURLcode bearssl_connect_step2(struct Curl_easy *data, |
| struct connectdata *conn, int sockindex) |
| { |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| CURLcode ret; |
| |
| DEBUGASSERT(backend); |
| |
| ret = bearssl_run_until(data, conn, sockindex, |
| BR_SSL_SENDAPP | BR_SSL_RECVAPP); |
| if(ret == CURLE_AGAIN) |
| return CURLE_OK; |
| if(ret == CURLE_OK) { |
| if(br_ssl_engine_current_state(&backend->ctx.eng) == BR_SSL_CLOSED) { |
| failf(data, "SSL: connection closed during handshake"); |
| return CURLE_SSL_CONNECT_ERROR; |
| } |
| connssl->connecting_state = ssl_connect_3; |
| } |
| return ret; |
| } |
| |
| static CURLcode bearssl_connect_step3(struct Curl_easy *data, |
| struct connectdata *conn, int sockindex) |
| { |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| CURLcode ret; |
| |
| DEBUGASSERT(ssl_connect_3 == connssl->connecting_state); |
| DEBUGASSERT(backend); |
| |
| if(conn->bits.tls_enable_alpn) { |
| const char *protocol; |
| |
| protocol = br_ssl_engine_get_selected_protocol(&backend->ctx.eng); |
| if(protocol) { |
| infof(data, VTLS_INFOF_ALPN_ACCEPTED_1STR, protocol); |
| |
| #ifdef USE_HTTP2 |
| if(!strcmp(protocol, ALPN_H2)) |
| conn->alpn = CURL_HTTP_VERSION_2; |
| else |
| #endif |
| if(!strcmp(protocol, ALPN_HTTP_1_1)) |
| conn->alpn = CURL_HTTP_VERSION_1_1; |
| else |
| infof(data, "ALPN, unrecognized protocol %s", protocol); |
| Curl_multiuse_state(data, conn->alpn == CURL_HTTP_VERSION_2 ? |
| BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE); |
| } |
| else |
| infof(data, VTLS_INFOF_NO_ALPN); |
| } |
| |
| if(SSL_SET_OPTION(primary.sessionid)) { |
| bool incache; |
| bool added = FALSE; |
| void *oldsession; |
| br_ssl_session_parameters *session; |
| |
| session = malloc(sizeof(*session)); |
| if(!session) |
| return CURLE_OUT_OF_MEMORY; |
| br_ssl_engine_get_session_parameters(&backend->ctx.eng, session); |
| Curl_ssl_sessionid_lock(data); |
| incache = !(Curl_ssl_getsessionid(data, conn, |
| SSL_IS_PROXY() ? TRUE : FALSE, |
| &oldsession, NULL, sockindex)); |
| if(incache) |
| Curl_ssl_delsessionid(data, oldsession); |
| ret = Curl_ssl_addsessionid(data, conn, |
| SSL_IS_PROXY() ? TRUE : FALSE, |
| session, 0, sockindex, &added); |
| Curl_ssl_sessionid_unlock(data); |
| if(!added) |
| free(session); |
| if(ret) { |
| return CURLE_OUT_OF_MEMORY; |
| } |
| } |
| |
| connssl->connecting_state = ssl_connect_done; |
| |
| return CURLE_OK; |
| } |
| |
| static ssize_t bearssl_send(struct Curl_easy *data, int sockindex, |
| const void *buf, size_t len, CURLcode *err) |
| { |
| struct connectdata *conn = data->conn; |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| unsigned char *app; |
| size_t applen; |
| |
| DEBUGASSERT(backend); |
| |
| for(;;) { |
| *err = bearssl_run_until(data, conn, sockindex, BR_SSL_SENDAPP); |
| if (*err != CURLE_OK) |
| return -1; |
| app = br_ssl_engine_sendapp_buf(&backend->ctx.eng, &applen); |
| if(!app) { |
| failf(data, "SSL: connection closed during write"); |
| *err = CURLE_SEND_ERROR; |
| return -1; |
| } |
| if(backend->pending_write) { |
| applen = backend->pending_write; |
| backend->pending_write = 0; |
| return applen; |
| } |
| if(applen > len) |
| applen = len; |
| memcpy(app, buf, applen); |
| br_ssl_engine_sendapp_ack(&backend->ctx.eng, applen); |
| br_ssl_engine_flush(&backend->ctx.eng, 0); |
| backend->pending_write = applen; |
| } |
| } |
| |
| static ssize_t bearssl_recv(struct Curl_easy *data, int sockindex, |
| char *buf, size_t len, CURLcode *err) |
| { |
| struct connectdata *conn = data->conn; |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| unsigned char *app; |
| size_t applen; |
| |
| DEBUGASSERT(backend); |
| |
| *err = bearssl_run_until(data, conn, sockindex, BR_SSL_RECVAPP); |
| if(*err != CURLE_OK) |
| return -1; |
| app = br_ssl_engine_recvapp_buf(&backend->ctx.eng, &applen); |
| if(!app) |
| return 0; |
| if(applen > len) |
| applen = len; |
| memcpy(buf, app, applen); |
| br_ssl_engine_recvapp_ack(&backend->ctx.eng, applen); |
| |
| return applen; |
| } |
| |
| static CURLcode bearssl_connect_common(struct Curl_easy *data, |
| struct connectdata *conn, |
| int sockindex, |
| bool nonblocking, |
| bool *done) |
| { |
| CURLcode ret; |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| curl_socket_t sockfd = conn->sock[sockindex]; |
| timediff_t timeout_ms; |
| int what; |
| |
| /* check if the connection has already been established */ |
| if(ssl_connection_complete == connssl->state) { |
| *done = TRUE; |
| return CURLE_OK; |
| } |
| |
| if(ssl_connect_1 == connssl->connecting_state) { |
| ret = bearssl_connect_step1(data, conn, sockindex); |
| if(ret) |
| return ret; |
| } |
| |
| while(ssl_connect_2 == connssl->connecting_state || |
| ssl_connect_2_reading == connssl->connecting_state || |
| ssl_connect_2_writing == connssl->connecting_state) { |
| /* check allowed time left */ |
| timeout_ms = Curl_timeleft(data, NULL, TRUE); |
| |
| if(timeout_ms < 0) { |
| /* no need to continue if time already is up */ |
| failf(data, "SSL connection timeout"); |
| return CURLE_OPERATION_TIMEDOUT; |
| } |
| |
| /* if ssl is expecting something, check if it's available. */ |
| if(ssl_connect_2_reading == connssl->connecting_state || |
| ssl_connect_2_writing == connssl->connecting_state) { |
| |
| curl_socket_t writefd = ssl_connect_2_writing == |
| connssl->connecting_state?sockfd:CURL_SOCKET_BAD; |
| curl_socket_t readfd = ssl_connect_2_reading == |
| connssl->connecting_state?sockfd:CURL_SOCKET_BAD; |
| |
| what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd, |
| nonblocking?0:timeout_ms); |
| if(what < 0) { |
| /* fatal error */ |
| failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO); |
| return CURLE_SSL_CONNECT_ERROR; |
| } |
| else if(0 == what) { |
| if(nonblocking) { |
| *done = FALSE; |
| return CURLE_OK; |
| } |
| else { |
| /* timeout */ |
| failf(data, "SSL connection timeout"); |
| return CURLE_OPERATION_TIMEDOUT; |
| } |
| } |
| /* socket is readable or writable */ |
| } |
| |
| /* Run transaction, and return to the caller if it failed or if this |
| * connection is done nonblocking and this loop would execute again. This |
| * permits the owner of a multi handle to abort a connection attempt |
| * before step2 has completed while ensuring that a client using select() |
| * or epoll() will always have a valid fdset to wait on. |
| */ |
| ret = bearssl_connect_step2(data, conn, sockindex); |
| if(ret || (nonblocking && |
| (ssl_connect_2 == connssl->connecting_state || |
| ssl_connect_2_reading == connssl->connecting_state || |
| ssl_connect_2_writing == connssl->connecting_state))) |
| return ret; |
| } |
| |
| if(ssl_connect_3 == connssl->connecting_state) { |
| ret = bearssl_connect_step3(data, conn, sockindex); |
| if(ret) |
| return ret; |
| } |
| |
| if(ssl_connect_done == connssl->connecting_state) { |
| connssl->state = ssl_connection_complete; |
| conn->recv[sockindex] = bearssl_recv; |
| conn->send[sockindex] = bearssl_send; |
| *done = TRUE; |
| } |
| else |
| *done = FALSE; |
| |
| /* Reset our connect state machine */ |
| connssl->connecting_state = ssl_connect_1; |
| |
| return CURLE_OK; |
| } |
| |
| static size_t bearssl_version(char *buffer, size_t size) |
| { |
| return msnprintf(buffer, size, "BearSSL"); |
| } |
| |
| static bool bearssl_data_pending(const struct connectdata *conn, |
| int connindex) |
| { |
| const struct ssl_connect_data *connssl = &conn->ssl[connindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| DEBUGASSERT(backend); |
| return br_ssl_engine_current_state(&backend->ctx.eng) & BR_SSL_RECVAPP; |
| } |
| |
| static CURLcode bearssl_random(struct Curl_easy *data UNUSED_PARAM, |
| unsigned char *entropy, size_t length) |
| { |
| static br_hmac_drbg_context ctx; |
| static bool seeded = FALSE; |
| |
| if(!seeded) { |
| br_prng_seeder seeder; |
| |
| br_hmac_drbg_init(&ctx, &br_sha256_vtable, NULL, 0); |
| seeder = br_prng_seeder_system(NULL); |
| if(!seeder || !seeder(&ctx.vtable)) |
| return CURLE_FAILED_INIT; |
| seeded = TRUE; |
| } |
| br_hmac_drbg_generate(&ctx, entropy, length); |
| |
| return CURLE_OK; |
| } |
| |
| static CURLcode bearssl_connect(struct Curl_easy *data, |
| struct connectdata *conn, int sockindex) |
| { |
| CURLcode ret; |
| bool done = FALSE; |
| |
| ret = bearssl_connect_common(data, conn, sockindex, FALSE, &done); |
| if(ret) |
| return ret; |
| |
| DEBUGASSERT(done); |
| |
| return CURLE_OK; |
| } |
| |
| static CURLcode bearssl_connect_nonblocking(struct Curl_easy *data, |
| struct connectdata *conn, |
| int sockindex, bool *done) |
| { |
| return bearssl_connect_common(data, conn, sockindex, TRUE, done); |
| } |
| |
| static void *bearssl_get_internals(struct ssl_connect_data *connssl, |
| CURLINFO info UNUSED_PARAM) |
| { |
| struct ssl_backend_data *backend = connssl->backend; |
| DEBUGASSERT(backend); |
| return &backend->ctx; |
| } |
| |
| static void bearssl_close(struct Curl_easy *data, |
| struct connectdata *conn, int sockindex) |
| { |
| struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| struct ssl_backend_data *backend = connssl->backend; |
| size_t i; |
| |
| DEBUGASSERT(backend); |
| |
| if(backend->active) { |
| br_ssl_engine_close(&backend->ctx.eng); |
| (void)bearssl_run_until(data, conn, sockindex, BR_SSL_CLOSED); |
| } |
| for(i = 0; i < backend->anchors_len; ++i) |
| free(backend->anchors[i].dn.data); |
| free(backend->anchors); |
| } |
| |
| static void bearssl_session_free(void *ptr) |
| { |
| free(ptr); |
| } |
| |
| static CURLcode bearssl_sha256sum(const unsigned char *input, |
| size_t inputlen, |
| unsigned char *sha256sum, |
| size_t sha256len UNUSED_PARAM) |
| { |
| br_sha256_context ctx; |
| |
| br_sha256_init(&ctx); |
| br_sha256_update(&ctx, input, inputlen); |
| br_sha256_out(&ctx, sha256sum); |
| return CURLE_OK; |
| } |
| |
| const struct Curl_ssl Curl_ssl_bearssl = { |
| { CURLSSLBACKEND_BEARSSL, "bearssl" }, /* info */ |
| SSLSUPP_CAINFO_BLOB | SSLSUPP_SSL_CTX, |
| sizeof(struct ssl_backend_data), |
| |
| Curl_none_init, /* init */ |
| Curl_none_cleanup, /* cleanup */ |
| bearssl_version, /* version */ |
| Curl_none_check_cxn, /* check_cxn */ |
| Curl_none_shutdown, /* shutdown */ |
| bearssl_data_pending, /* data_pending */ |
| bearssl_random, /* random */ |
| Curl_none_cert_status_request, /* cert_status_request */ |
| bearssl_connect, /* connect */ |
| bearssl_connect_nonblocking, /* connect_nonblocking */ |
| Curl_ssl_getsock, /* getsock */ |
| bearssl_get_internals, /* get_internals */ |
| bearssl_close, /* close_one */ |
| Curl_none_close_all, /* close_all */ |
| bearssl_session_free, /* session_free */ |
| Curl_none_set_engine, /* set_engine */ |
| Curl_none_set_engine_default, /* set_engine_default */ |
| Curl_none_engines_list, /* engines_list */ |
| Curl_none_false_start, /* false_start */ |
| bearssl_sha256sum, /* sha256sum */ |
| NULL, /* associate_connection */ |
| NULL /* disassociate_connection */ |
| }; |
| |
| #endif /* USE_BEARSSL */ |