blob: b92eb14fef7c99fd4ba32fa439ed99fa8465ded6 [file] [log] [blame]
/*
* Public Key abstraction layer
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_PK_C)
#include "mbedtls/pk.h"
#include "mbedtls/pk_internal.h"
#if defined(MBEDTLS_RSA_C) || defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
#include "mbedtls/rsa.h"
#endif
#if defined(MBEDTLS_ECP_C)
#include "mbedtls/ecp.h"
#endif
#if defined(MBEDTLS_ECDSA_C)
#include "mbedtls/ecdsa.h"
#endif
#if defined(MBEDTLS_USE_TINYCRYPT)
#include "tinycrypt/ecc.h"
#include "tinycrypt/ecc_dsa.h"
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#endif /* MBEDTLS_USE_TINYCRYPT */
#include "mbedtls/platform_util.h"
#include "mbedtls/platform.h"
#if !defined(MBEDTLS_PLATFORM_C)
#include <stdlib.h>
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif
#include <string.h>
#include <limits.h>
#include <stdint.h>
/* Parameter validation macros based on platform_util.h */
#define PK_VALIDATE_RET( cond ) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_PK_BAD_INPUT_DATA )
#define PK_VALIDATE( cond ) \
MBEDTLS_INTERNAL_VALIDATE( cond )
/*
* Internal wrappers around RSA functions
*/
#if defined(MBEDTLS_RSA_C)
static int rsa_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_RSA ||
type == MBEDTLS_PK_RSASSA_PSS );
}
static size_t rsa_get_bitlen( const void *ctx )
{
const mbedtls_rsa_context * rsa = (const mbedtls_rsa_context *) ctx;
return( 8 * mbedtls_rsa_get_len( rsa ) );
}
static int rsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
size_t rsa_len = mbedtls_rsa_get_len( rsa );
#if SIZE_MAX > UINT_MAX
if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
if( sig_len < rsa_len )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
if( ( ret = mbedtls_rsa_pkcs1_verify( rsa, NULL, NULL,
MBEDTLS_RSA_PUBLIC, md_alg,
(unsigned int) hash_len, hash, sig ) ) != 0 )
return( ret );
/* The buffer contains a valid signature followed by extra data.
* We have a special error code for that so that so that callers can
* use mbedtls_pk_verify() to check "Does the buffer start with a
* valid signature?" and not just "Does the buffer contain a valid
* signature?". */
if( sig_len > rsa_len )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( 0 );
}
static int rsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
#if SIZE_MAX > UINT_MAX
if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
*sig_len = mbedtls_rsa_get_len( rsa );
return( mbedtls_rsa_pkcs1_sign( rsa, f_rng, p_rng, MBEDTLS_RSA_PRIVATE,
md_alg, (unsigned int) hash_len, hash, sig ) );
}
static int rsa_decrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
if( ilen != mbedtls_rsa_get_len( rsa ) )
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
return( mbedtls_rsa_pkcs1_decrypt( rsa, f_rng, p_rng,
MBEDTLS_RSA_PRIVATE, olen, input, output, osize ) );
}
static int rsa_encrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_context * rsa = (mbedtls_rsa_context *) ctx;
*olen = mbedtls_rsa_get_len( rsa );
if( *olen > osize )
return( MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE );
return( mbedtls_rsa_pkcs1_encrypt( rsa, f_rng, p_rng, MBEDTLS_RSA_PUBLIC,
ilen, input, output ) );
}
static int rsa_check_pair_wrap( const void *pub, const void *prv )
{
return( mbedtls_rsa_check_pub_priv( (const mbedtls_rsa_context *) pub,
(const mbedtls_rsa_context *) prv ) );
}
static void *rsa_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_context ) );
if( ctx != NULL )
mbedtls_rsa_init( (mbedtls_rsa_context *) ctx, 0, 0 );
return( ctx );
}
static void rsa_free_wrap( void *ctx )
{
mbedtls_rsa_free( (mbedtls_rsa_context *) ctx );
mbedtls_free( ctx );
}
static void rsa_debug( const void *ctx, mbedtls_pk_debug_item *items )
{
items->type = MBEDTLS_PK_DEBUG_MPI;
items->name = "rsa.N";
items->value = &( ((mbedtls_rsa_context *) ctx)->N );
items++;
items->type = MBEDTLS_PK_DEBUG_MPI;
items->name = "rsa.E";
items->value = &( ((mbedtls_rsa_context *) ctx)->E );
}
const mbedtls_pk_info_t mbedtls_rsa_info = {
MBEDTLS_PK_RSA,
"RSA",
rsa_get_bitlen,
rsa_can_do,
rsa_verify_wrap,
rsa_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
rsa_decrypt_wrap,
rsa_encrypt_wrap,
rsa_check_pair_wrap,
rsa_alloc_wrap,
rsa_free_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
rsa_debug,
};
#endif /* MBEDTLS_RSA_C */
/*
* Internal wrappers around ECC functions - based on ECP module
*/
#if defined(MBEDTLS_ECP_C)
/*
* Generic EC key
*/
static int eckey_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH ||
type == MBEDTLS_PK_ECDSA );
}
static size_t eckey_get_bitlen( const void *ctx )
{
return( ((mbedtls_ecp_keypair *) ctx)->grp.pbits );
}
#if defined(MBEDTLS_ECDSA_C)
/* Forward declarations */
static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len );
static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
static int eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
mbedtls_ecdsa_context ecdsa;
mbedtls_ecdsa_init( &ecdsa );
if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 )
ret = ecdsa_verify_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len );
mbedtls_ecdsa_free( &ecdsa );
return( ret );
}
static int eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
int ret;
mbedtls_ecdsa_context ecdsa;
mbedtls_ecdsa_init( &ecdsa );
if( ( ret = mbedtls_ecdsa_from_keypair( &ecdsa, ctx ) ) == 0 )
ret = ecdsa_sign_wrap( &ecdsa, md_alg, hash, hash_len, sig, sig_len,
f_rng, p_rng );
mbedtls_ecdsa_free( &ecdsa );
return( ret );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
/* Forward declarations */
static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx );
static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx );
/*
* Restart context for ECDSA operations with ECKEY context
*
* We need to store an actual ECDSA context, as we need to pass the same to
* the underlying ecdsa function, so we can't create it on the fly every time.
*/
typedef struct
{
mbedtls_ecdsa_restart_ctx ecdsa_rs;
mbedtls_ecdsa_context ecdsa_ctx;
} eckey_restart_ctx;
static void *eckey_rs_alloc( void )
{
eckey_restart_ctx *rs_ctx;
void *ctx = mbedtls_calloc( 1, sizeof( eckey_restart_ctx ) );
if( ctx != NULL )
{
rs_ctx = ctx;
mbedtls_ecdsa_restart_init( &rs_ctx->ecdsa_rs );
mbedtls_ecdsa_init( &rs_ctx->ecdsa_ctx );
}
return( ctx );
}
static void eckey_rs_free( void *ctx )
{
eckey_restart_ctx *rs_ctx;
if( ctx == NULL)
return;
rs_ctx = ctx;
mbedtls_ecdsa_restart_free( &rs_ctx->ecdsa_rs );
mbedtls_ecdsa_free( &rs_ctx->ecdsa_ctx );
mbedtls_free( ctx );
}
static int eckey_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx )
{
int ret;
eckey_restart_ctx *rs = rs_ctx;
/* Should never happen */
if( rs == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
/* set up our own sub-context if needed (that is, on first run) */
if( rs->ecdsa_ctx.grp.pbits == 0 )
MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) );
MBEDTLS_MPI_CHK( ecdsa_verify_rs_wrap( &rs->ecdsa_ctx,
md_alg, hash, hash_len,
sig, sig_len, &rs->ecdsa_rs ) );
cleanup:
return( ret );
}
static int eckey_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx )
{
int ret;
eckey_restart_ctx *rs = rs_ctx;
/* Should never happen */
if( rs == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
/* set up our own sub-context if needed (that is, on first run) */
if( rs->ecdsa_ctx.grp.pbits == 0 )
MBEDTLS_MPI_CHK( mbedtls_ecdsa_from_keypair( &rs->ecdsa_ctx, ctx ) );
MBEDTLS_MPI_CHK( ecdsa_sign_rs_wrap( &rs->ecdsa_ctx, md_alg,
hash, hash_len, sig, sig_len,
f_rng, p_rng, &rs->ecdsa_rs ) );
cleanup:
return( ret );
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
#endif /* MBEDTLS_ECDSA_C */
static int eckey_check_pair( const void *pub, const void *prv )
{
return( mbedtls_ecp_check_pub_priv( (const mbedtls_ecp_keypair *) pub,
(const mbedtls_ecp_keypair *) prv ) );
}
static void *eckey_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecp_keypair ) );
if( ctx != NULL )
mbedtls_ecp_keypair_init( ctx );
return( ctx );
}
static void eckey_free_wrap( void *ctx )
{
mbedtls_ecp_keypair_free( (mbedtls_ecp_keypair *) ctx );
mbedtls_free( ctx );
}
static void eckey_debug( const void *ctx, mbedtls_pk_debug_item *items )
{
items->type = MBEDTLS_PK_DEBUG_ECP;
items->name = "eckey.Q";
items->value = &( ((mbedtls_ecp_keypair *) ctx)->Q );
}
const mbedtls_pk_info_t mbedtls_eckey_info = {
MBEDTLS_PK_ECKEY,
"EC",
eckey_get_bitlen,
eckey_can_do,
#if defined(MBEDTLS_ECDSA_C)
eckey_verify_wrap,
eckey_sign_wrap,
#if defined(MBEDTLS_ECP_RESTARTABLE)
eckey_verify_rs_wrap,
eckey_sign_rs_wrap,
#endif
#else /* MBEDTLS_ECDSA_C */
NULL,
NULL,
#endif /* MBEDTLS_ECDSA_C */
NULL,
NULL,
eckey_check_pair,
eckey_alloc_wrap,
eckey_free_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
eckey_rs_alloc,
eckey_rs_free,
#endif
eckey_debug,
};
/*
* EC key restricted to ECDH
*/
static int eckeydh_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECKEY ||
type == MBEDTLS_PK_ECKEY_DH );
}
const mbedtls_pk_info_t mbedtls_eckeydh_info = {
MBEDTLS_PK_ECKEY_DH,
"EC_DH",
eckey_get_bitlen, /* Same underlying key structure */
eckeydh_can_do,
NULL,
NULL,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
NULL,
NULL,
eckey_check_pair,
eckey_alloc_wrap, /* Same underlying key structure */
eckey_free_wrap, /* Same underlying key structure */
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
eckey_debug, /* Same underlying key structure */
};
#endif /* MBEDTLS_ECP_C */
/*
* Internal wrappers around ECC functions - based on TinyCrypt
*/
#if defined(MBEDTLS_USE_TINYCRYPT)
/*
* An ASN.1 encoded signature is a sequence of two ASN.1 integers. Parse one of
* those integers and convert it to the fixed-length encoding.
*/
static int extract_ecdsa_sig_int( unsigned char **from, const unsigned char *end,
unsigned char *to, size_t to_len )
{
int ret;
size_t unpadded_len, padding_len;
if( ( ret = mbedtls_asn1_get_tag( from, end, &unpadded_len,
MBEDTLS_ASN1_INTEGER ) ) != 0 )
{
return( ret );
}
while( unpadded_len > 0 && **from == 0x00 )
{
( *from )++;
unpadded_len--;
}
if( unpadded_len > to_len || unpadded_len == 0 )
return( MBEDTLS_ERR_ASN1_LENGTH_MISMATCH );
padding_len = to_len - unpadded_len;
memset( to, 0x00, padding_len );
mbedtls_platform_memcpy( to + padding_len, *from, unpadded_len );
( *from ) += unpadded_len;
return( 0 );
}
/*
* Convert a signature from an ASN.1 sequence of two integers
* to a raw {r,s} buffer. Note: the provided sig buffer must be at least
* twice as big as int_size.
*/
static int extract_ecdsa_sig( unsigned char **p, const unsigned char *end,
unsigned char *sig, size_t int_size )
{
int ret;
size_t tmp_size;
if( ( ret = mbedtls_asn1_get_tag( p, end, &tmp_size,
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
return( ret );
/* Extract r */
if( ( ret = extract_ecdsa_sig_int( p, end, sig, int_size ) ) != 0 )
return( ret );
/* Extract s */
if( ( ret = extract_ecdsa_sig_int( p, end, sig + int_size, int_size ) ) != 0 )
return( ret );
return( 0 );
}
static size_t uecc_eckey_get_bitlen( const void *ctx )
{
(void) ctx;
return( (size_t) ( NUM_ECC_BYTES * 8 ) );
}
static int uecc_eckey_check_pair( const void *pub, const void *prv )
{
const mbedtls_uecc_keypair *uecc_pub =
(const mbedtls_uecc_keypair *) pub;
const mbedtls_uecc_keypair *uecc_prv =
(const mbedtls_uecc_keypair *) prv;
if( mbedtls_platform_memcmp( uecc_pub->public_key,
uecc_prv->public_key,
2 * NUM_ECC_BYTES ) == 0 )
{
return( 0 );
}
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
}
static int uecc_eckey_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECDSA ||
type == MBEDTLS_PK_ECKEY );
}
static int uecc_eckey_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED;
volatile int ret_fi = UECC_FAULT_DETECTED;
uint8_t signature[2*NUM_ECC_BYTES];
unsigned char *p;
const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx;
((void) md_alg);
p = (unsigned char*) sig;
ret = extract_ecdsa_sig( &p, sig + sig_len, signature, NUM_ECC_BYTES );
if( ret != 0 )
return( ret );
ret_fi = uECC_verify( keypair->public_key, hash,
(unsigned) hash_len, signature );
if( ret_fi == UECC_FAULT_DETECTED )
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
if( ret_fi == UECC_SUCCESS )
{
mbedtls_platform_random_delay();
if( ret_fi == UECC_SUCCESS )
return( 0 );
else
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
}
return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED );
}
/*
* Simultaneously convert and move raw MPI from the beginning of a buffer
* to an ASN.1 MPI at the end of the buffer.
* See also mbedtls_asn1_write_mpi().
*
* p: pointer to the end of the output buffer
* start: start of the output buffer, and also of the mpi to write at the end
* n_len: length of the mpi to read from start
*
* Warning:
* The total length of the output buffer must be smaller than 128 Bytes.
*/
static int asn1_write_mpibuf( unsigned char **p, unsigned char *start,
size_t n_len )
{
size_t len = 0;
int ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED;
if( (size_t)( *p - start ) < n_len )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
len = n_len;
*p -= len;
ret = mbedtls_platform_memmove( *p, start, len );
if( ret != 0 )
{
return( ret );
}
/* ASN.1 DER encoding requires minimal length, so skip leading 0s.
* Neither r nor s should be 0, but as a failsafe measure, still detect
* that rather than overflowing the buffer in case of an error. */
while( len > 0 && **p == 0x00 )
{
++(*p);
--len;
}
/* this is only reached if the signature was invalid */
if( len == 0 )
return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED );
/* if the msb is 1, ASN.1 requires that we prepend a 0.
* Neither r nor s can be 0, so we can assume len > 0 at all times. */
if( **p & 0x80 )
{
if( *p - start < 1 )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
*--(*p) = 0x00;
len += 1;
}
/* The ASN.1 length encoding is just a single Byte containing the length,
* as we assume that the total buffer length is smaller than 128 Bytes. */
*--(*p) = len;
*--(*p) = MBEDTLS_ASN1_INTEGER;
len += 2;
return( (int) len );
}
/* Transcode signature from uECC format to ASN.1 sequence.
* See ecdsa_signature_to_asn1 in ecdsa.c, but with byte buffers instead of
* MPIs, and in-place.
*
* [in/out] sig: the signature pre- and post-transcoding
* [in/out] sig_len: signature length pre- and post-transcoding
* [int] buf_len: the available size the in/out buffer
*
* Warning: buf_len must be smaller than 128 Bytes.
*/
static int pk_ecdsa_sig_asn1_from_uecc( unsigned char *sig, size_t *sig_len,
size_t buf_len )
{
int ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED;
size_t len = 0;
const size_t rs_len = *sig_len / 2;
unsigned char *p = sig + buf_len;
MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig + rs_len, rs_len ) );
MBEDTLS_ASN1_CHK_ADD( len, asn1_write_mpibuf( &p, sig, rs_len ) );
/* The ASN.1 length encoding is just a single Byte containing the length,
* as we assume that the total buffer length is smaller than 128 Bytes. */
*--p = len;
*--p = MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE;
len += 2;
ret = mbedtls_platform_memmove( sig, p, len );
if( ret != 0 )
{
return( ret );
}
*sig_len = len;
return( ret );
}
static int uecc_eckey_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
const mbedtls_uecc_keypair *keypair = (const mbedtls_uecc_keypair *) ctx;
int ret;
/*
* RFC-4492 page 20:
*
* Ecdsa-Sig-Value ::= SEQUENCE {
* r INTEGER,
* s INTEGER
* }
*
* Size is at most
* 1 (tag) + 1 (len) + 1 (initial 0) + NUM_ECC_BYTES for each of r and s,
* twice that + 1 (tag) + 2 (len) for the sequence
*
* (The ASN.1 length encodings are all 1-Byte encodings because
* the total size is smaller than 128 Bytes).
*/
#define MAX_SECP256R1_ECDSA_SIG_LEN ( 3 + 2 * ( 3 + NUM_ECC_BYTES ) )
ret = uECC_sign( keypair->private_key, hash, hash_len, sig );
if( ret == UECC_FAULT_DETECTED )
return( MBEDTLS_ERR_PLATFORM_FAULT_DETECTED );
if( ret != UECC_SUCCESS )
return( MBEDTLS_ERR_PK_HW_ACCEL_FAILED );
*sig_len = 2 * NUM_ECC_BYTES;
/* uECC owns its rng function pointer */
(void) f_rng;
(void) p_rng;
(void) md_alg;
return( pk_ecdsa_sig_asn1_from_uecc( sig, sig_len,
MAX_SECP256R1_ECDSA_SIG_LEN ) );
#undef MAX_SECP256R1_ECDSA_SIG_LEN
}
#if !defined(MBEDTLS_PK_SINGLE_TYPE)
static void *uecc_eckey_alloc_wrap( void )
{
return( mbedtls_calloc( 1, sizeof( mbedtls_uecc_keypair ) ) );
}
static void uecc_eckey_free_wrap( void *ctx )
{
if( ctx == NULL )
return;
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_uecc_keypair ) );
mbedtls_free( ctx );
}
#endif /* MBEDTLS_PK_SINGLE_TYPE */
#if !defined(MBEDTLS_PK_SINGLE_TYPE)
const mbedtls_pk_info_t mbedtls_uecc_eckey_info =
MBEDTLS_PK_INFO( MBEDTLS_PK_INFO_ECKEY );
#endif
#endif /* MBEDTLS_USE_TINYCRYPT */
/*
* Internal wrappers around ECDSA functions
*/
#if defined(MBEDTLS_ECDSA_C)
static int ecdsa_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_ECDSA );
}
static int ecdsa_verify_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
int ret;
((void) md_alg);
ret = mbedtls_ecdsa_read_signature( (mbedtls_ecdsa_context *) ctx,
hash, hash_len, sig, sig_len );
if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( ret );
}
static int ecdsa_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
return( mbedtls_ecdsa_write_signature( (mbedtls_ecdsa_context *) ctx,
md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
static int ecdsa_verify_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
void *rs_ctx )
{
int ret;
((void) md_alg);
ret = mbedtls_ecdsa_read_signature_restartable(
(mbedtls_ecdsa_context *) ctx,
hash, hash_len, sig, sig_len,
(mbedtls_ecdsa_restart_ctx *) rs_ctx );
if( ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( ret );
}
static int ecdsa_sign_rs_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
void *rs_ctx )
{
return( mbedtls_ecdsa_write_signature_restartable(
(mbedtls_ecdsa_context *) ctx,
md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng,
(mbedtls_ecdsa_restart_ctx *) rs_ctx ) );
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
static void *ecdsa_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_context ) );
if( ctx != NULL )
mbedtls_ecdsa_init( (mbedtls_ecdsa_context *) ctx );
return( ctx );
}
static void ecdsa_free_wrap( void *ctx )
{
mbedtls_ecdsa_free( (mbedtls_ecdsa_context *) ctx );
mbedtls_free( ctx );
}
#if defined(MBEDTLS_ECP_RESTARTABLE)
static void *ecdsa_rs_alloc( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_ecdsa_restart_ctx ) );
if( ctx != NULL )
mbedtls_ecdsa_restart_init( ctx );
return( ctx );
}
static void ecdsa_rs_free( void *ctx )
{
mbedtls_ecdsa_restart_free( ctx );
mbedtls_free( ctx );
}
#endif /* MBEDTLS_ECP_RESTARTABLE */
const mbedtls_pk_info_t mbedtls_ecdsa_info = {
MBEDTLS_PK_ECDSA,
"ECDSA",
eckey_get_bitlen, /* Compatible key structures */
ecdsa_can_do,
ecdsa_verify_wrap,
ecdsa_sign_wrap,
#if defined(MBEDTLS_ECP_RESTARTABLE)
ecdsa_verify_rs_wrap,
ecdsa_sign_rs_wrap,
#endif
NULL,
NULL,
eckey_check_pair, /* Compatible key structures */
ecdsa_alloc_wrap,
ecdsa_free_wrap,
#if defined(MBEDTLS_ECP_RESTARTABLE)
ecdsa_rs_alloc,
ecdsa_rs_free,
#endif
eckey_debug, /* Compatible key structures */
};
#endif /* MBEDTLS_ECDSA_C */
/*
* Internal wrappers for RSA-alt support
*/
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
static int rsa_alt_can_do( mbedtls_pk_type_t type )
{
return( type == MBEDTLS_PK_RSA );
}
static size_t rsa_alt_get_bitlen( const void *ctx )
{
const mbedtls_rsa_alt_context *rsa_alt = (const mbedtls_rsa_alt_context *) ctx;
return( 8 * rsa_alt->key_len_func( rsa_alt->key ) );
}
static int rsa_alt_sign_wrap( void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx;
#if SIZE_MAX > UINT_MAX
if( UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
*sig_len = rsa_alt->key_len_func( rsa_alt->key );
return( rsa_alt->sign_func( rsa_alt->key, f_rng, p_rng, MBEDTLS_RSA_PRIVATE,
md_alg, (unsigned int) hash_len, hash, sig ) );
}
static int rsa_alt_decrypt_wrap( void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
mbedtls_rsa_alt_context *rsa_alt = (mbedtls_rsa_alt_context *) ctx;
((void) f_rng);
((void) p_rng);
if( ilen != rsa_alt->key_len_func( rsa_alt->key ) )
return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
return( rsa_alt->decrypt_func( rsa_alt->key,
MBEDTLS_RSA_PRIVATE, olen, input, output, osize ) );
}
#if defined(MBEDTLS_RSA_C)
static int rsa_alt_check_pair( const void *pub, const void *prv )
{
unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
unsigned char hash[32];
size_t sig_len = 0;
int ret;
if( rsa_alt_get_bitlen( prv ) != rsa_get_bitlen( pub ) )
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
mbedtls_platform_memset( hash, 0x2a, sizeof( hash ) );
if( ( ret = rsa_alt_sign_wrap( (void *) prv, MBEDTLS_MD_NONE,
hash, sizeof( hash ),
sig, &sig_len, NULL, NULL ) ) != 0 )
{
return( ret );
}
if( rsa_verify_wrap( (void *) pub, MBEDTLS_MD_NONE,
hash, sizeof( hash ), sig, sig_len ) != 0 )
{
return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
}
return( 0 );
}
#endif /* MBEDTLS_RSA_C */
static void *rsa_alt_alloc_wrap( void )
{
void *ctx = mbedtls_calloc( 1, sizeof( mbedtls_rsa_alt_context ) );
if( ctx != NULL )
mbedtls_platform_memset( ctx, 0, sizeof( mbedtls_rsa_alt_context ) );
return( ctx );
}
static void rsa_alt_free_wrap( void *ctx )
{
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_rsa_alt_context ) );
mbedtls_free( ctx );
}
const mbedtls_pk_info_t mbedtls_rsa_alt_info = {
MBEDTLS_PK_RSA_ALT,
"RSA-alt",
rsa_alt_get_bitlen,
rsa_alt_can_do,
NULL,
rsa_alt_sign_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
rsa_alt_decrypt_wrap,
NULL,
#if defined(MBEDTLS_RSA_C)
rsa_alt_check_pair,
#else
NULL,
#endif
rsa_alt_alloc_wrap,
rsa_alt_free_wrap,
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
NULL,
NULL,
#endif
NULL,
};
#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
/*
* Access to members of the pk_info structure. When a single PK type is
* hardcoded, these should have zero runtime cost; otherwise, the usual
* dynamic dispatch based on pk_info is used.
*
* For function members, don't make a getter, but a function that directly
* calls the method, so that we can entirely get rid of function pointers
* when hardcoding a single PK - some compilers optimize better that way.
*
* Not implemented for members that are only present in builds with
* MBEDTLS_ECP_RESTARTABLE for now, as the main target for this is builds
* with MBEDTLS_USE_TINYCRYPT, which don't have MBEDTLS_ECP_RESTARTABLE.
*/
#if defined(MBEDTLS_PK_SINGLE_TYPE)
MBEDTLS_ALWAYS_INLINE static inline mbedtls_pk_type_t pk_info_type(
mbedtls_pk_handle_t info )
{
(void) info;
return( MBEDTLS_PK_INFO_TYPE( MBEDTLS_PK_SINGLE_TYPE ) );
}
MBEDTLS_ALWAYS_INLINE static inline const char * pk_info_name(
mbedtls_pk_handle_t info )
{
(void) info;
return( MBEDTLS_PK_INFO_NAME( MBEDTLS_PK_SINGLE_TYPE ) );
}
MBEDTLS_ALWAYS_INLINE static inline size_t pk_info_get_bitlen(
mbedtls_pk_handle_t info, const void *ctx )
{
(void) info;
return( MBEDTLS_PK_INFO_GET_BITLEN( MBEDTLS_PK_SINGLE_TYPE )( ctx ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_can_do(
mbedtls_pk_handle_t info, mbedtls_pk_type_t type )
{
(void) info;
return( MBEDTLS_PK_INFO_CAN_DO( MBEDTLS_PK_SINGLE_TYPE )( type ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_verify_func(
mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
(void) info;
#if MBEDTLS_PK_INFO_VERIFY_OMIT( MBEDTLS_PK_SINGLE_TYPE )
(void) ctx;
(void) md_alg;
(void) hash;
(void) hash_len;
(void) sig;
(void) sig_len;
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
#else
return( MBEDTLS_PK_INFO_VERIFY_FUNC( MBEDTLS_PK_SINGLE_TYPE )(
ctx, md_alg, hash, hash_len, sig, sig_len ) );
#endif
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_sign_func(
mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
(void) info;
#if MBEDTLS_PK_INFO_SIGN_OMIT( MBEDTLS_PK_SINGLE_TYPE )
(void) ctx;
(void) md_alg;
(void) hash;
(void) hash_len;
(void) sig;
(void) sig_len;
(void) f_rng;
(void) p_rng;
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
#else
return( MBEDTLS_PK_INFO_SIGN_FUNC( MBEDTLS_PK_SINGLE_TYPE )(
ctx, md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) );
#endif
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_decrypt_func(
mbedtls_pk_handle_t info, void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
(void) info;
#if MBEDTLS_PK_INFO_DECRYPT_OMIT( MBEDTLS_PK_SINGLE_TYPE )
(void) ctx;
(void) input;
(void) ilen;
(void) output;
(void) olen;
(void) osize;
(void) f_rng;
(void) p_rng;
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
#else
return( MBEDTLS_PK_INFO_DECRYPT_FUNC( MBEDTLS_PK_SINGLE_TYPE )(
ctx, input, ilen, output, olen, osize, f_rng, p_rng ) );
#endif
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_encrypt_func(
mbedtls_pk_handle_t info, void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
(void) info;
#if MBEDTLS_PK_INFO_ENCRYPT_OMIT( MBEDTLS_PK_SINGLE_TYPE )
(void) ctx;
(void) input;
(void) ilen;
(void) output;
(void) olen;
(void) osize;
(void) f_rng;
(void) p_rng;
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
#else
return( MBEDTLS_PK_INFO_ENCRYPT_FUNC( MBEDTLS_PK_SINGLE_TYPE )(
ctx, input, ilen, output, olen, osize, f_rng, p_rng ) );
#endif
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_check_pair_func(
mbedtls_pk_handle_t info, const void *pub, const void *prv )
{
(void) info;
#if MBEDTLS_PK_INFO_CHECK_PAIR_OMIT( MBEDTLS_PK_SINGLE_TYPE )
(void) pub;
(void) prv;
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#else
return( MBEDTLS_PK_INFO_CHECK_PAIR_FUNC( MBEDTLS_PK_SINGLE_TYPE )(
pub, prv ) );
#endif
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_debug_func(
mbedtls_pk_handle_t info,
const void *ctx, mbedtls_pk_debug_item *items )
{
(void) info;
#if MBEDTLS_PK_INFO_DEBUG_OMIT( MBEDTLS_PK_SINGLE_TYPE )
(void) ctx;
(void) items;
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
#else
return( MBEDTLS_PK_INFO_DEBUG_FUNC( MBEDTLS_PK_SINGLE_TYPE )( ctx, items ) );
#endif
}
#else /* MBEDTLS_PK_SINGLE_TYPE */
MBEDTLS_ALWAYS_INLINE static inline mbedtls_pk_type_t pk_info_type(
mbedtls_pk_handle_t info )
{
return( info->type );
}
MBEDTLS_ALWAYS_INLINE static inline const char * pk_info_name(
mbedtls_pk_handle_t info )
{
return( info->name );
}
MBEDTLS_ALWAYS_INLINE static inline size_t pk_info_get_bitlen(
mbedtls_pk_handle_t info, const void *ctx )
{
return( info->get_bitlen( ctx ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_can_do(
mbedtls_pk_handle_t info, mbedtls_pk_type_t type )
{
return( info->can_do( type ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_verify_func(
mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
if( info->verify_func == NULL )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( info->verify_func( ctx, md_alg, hash, hash_len, sig, sig_len ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_sign_func(
mbedtls_pk_handle_t info, void *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
if( info->sign_func == NULL )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( info->sign_func( ctx, md_alg, hash, hash_len, sig, sig_len,
f_rng, p_rng ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_decrypt_func(
mbedtls_pk_handle_t info, void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
if( info->decrypt_func == NULL )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( info->decrypt_func( ctx, input, ilen, output, olen, osize,
f_rng, p_rng ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_encrypt_func(
mbedtls_pk_handle_t info, void *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
if( info->encrypt_func == NULL )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
return( info->encrypt_func( ctx, input, ilen, output, olen, osize,
f_rng, p_rng ) );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_check_pair_func(
mbedtls_pk_handle_t info, const void *pub, const void *prv )
{
if( info->check_pair_func == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
return( info->check_pair_func( pub, prv ) );
}
MBEDTLS_ALWAYS_INLINE static inline void *pk_info_ctx_alloc_func(
mbedtls_pk_handle_t info )
{
return( info->ctx_alloc_func( ) );
}
MBEDTLS_ALWAYS_INLINE static inline void pk_info_ctx_free_func(
mbedtls_pk_handle_t info, void *ctx )
{
info->ctx_free_func( ctx );
}
MBEDTLS_ALWAYS_INLINE static inline int pk_info_debug_func(
mbedtls_pk_handle_t info,
const void *ctx, mbedtls_pk_debug_item *items )
{
if( info->debug_func == NULL )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
info->debug_func( ctx, items );
return( 0 );
}
#endif /* MBEDTLS_PK_SINGLE_TYPE */
/*
* Initialise a mbedtls_pk_context
*/
void mbedtls_pk_init( mbedtls_pk_context *ctx )
{
PK_VALIDATE( ctx != NULL );
#if !defined(MBEDTLS_PK_SINGLE_TYPE)
ctx->pk_info = MBEDTLS_PK_INVALID_HANDLE;
ctx->pk_ctx = NULL;
#else
memset( ctx, 0, sizeof( mbedtls_pk_context ) );
#endif
}
/*
* Free (the components of) a mbedtls_pk_context
*/
void mbedtls_pk_free( mbedtls_pk_context *ctx )
{
if( ctx == NULL )
return;
#if !defined(MBEDTLS_PK_SINGLE_TYPE)
if( MBEDTLS_PK_CTX_IS_VALID( ctx ) )
pk_info_ctx_free_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx );
#endif
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_pk_context ) );
}
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
/*
* Initialize a restart context
*/
void mbedtls_pk_restart_init( mbedtls_pk_restart_ctx *ctx )
{
PK_VALIDATE( ctx != NULL );
ctx->pk_info = NULL;
ctx->rs_ctx = NULL;
}
/*
* Free the components of a restart context
*/
void mbedtls_pk_restart_free( mbedtls_pk_restart_ctx *ctx )
{
if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) ||
ctx->pk_info->rs_free_func == NULL )
{
return;
}
ctx->pk_info->rs_free_func( ctx->rs_ctx );
ctx->pk_info = MBEDTLS_PK_INVALID_HANDLE;
ctx->rs_ctx = NULL;
}
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
/*
* Get pk_info structure from type
*/
mbedtls_pk_handle_t mbedtls_pk_info_from_type( mbedtls_pk_type_t pk_type )
{
#if defined(MBEDTLS_PK_SINGLE_TYPE)
if( pk_type == MBEDTLS_PK_INFO_TYPE( MBEDTLS_PK_SINGLE_TYPE ) )
return( MBEDTLS_PK_UNIQUE_VALID_HANDLE );
return( MBEDTLS_PK_INVALID_HANDLE );
#else /* MBEDTLS_PK_SINGLE_TYPE */
switch( pk_type ) {
#if defined(MBEDTLS_RSA_C)
case MBEDTLS_PK_RSA:
return( &mbedtls_rsa_info );
#endif
#if defined(MBEDTLS_ECP_C)
case MBEDTLS_PK_ECKEY_DH:
return( &mbedtls_eckeydh_info );
#endif
#if defined(MBEDTLS_ECDSA_C)
case MBEDTLS_PK_ECDSA:
return( &mbedtls_ecdsa_info );
#endif
#if defined(MBEDTLS_USE_TINYCRYPT)
case MBEDTLS_PK_ECKEY:
return( &mbedtls_uecc_eckey_info );
#else /* MBEDTLS_USE_TINYCRYPT */
#if defined(MBEDTLS_ECP_C)
case MBEDTLS_PK_ECKEY:
return( &mbedtls_eckey_info );
#endif
#endif /* MBEDTLS_USE_TINYCRYPT */
/* MBEDTLS_PK_RSA_ALT omitted on purpose */
default:
return( NULL );
}
#endif /* MBEDTLS_PK_SINGLE_TYPE */
}
/*
* Initialise context
*/
int mbedtls_pk_setup( mbedtls_pk_context *ctx, mbedtls_pk_handle_t info )
{
PK_VALIDATE_RET( ctx != NULL );
if( info == MBEDTLS_PK_INVALID_HANDLE )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#if !defined(MBEDTLS_PK_SINGLE_TYPE)
if( ctx->pk_info != NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
ctx->pk_info = info;
if( ( ctx->pk_ctx = pk_info_ctx_alloc_func( info ) ) == NULL )
return( MBEDTLS_ERR_PK_ALLOC_FAILED );
#else
(void) ctx;
#endif
return( 0 );
}
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
/*
* Initialize an RSA-alt context
*/
int mbedtls_pk_setup_rsa_alt( mbedtls_pk_context *ctx, void * key,
mbedtls_pk_rsa_alt_decrypt_func decrypt_func,
mbedtls_pk_rsa_alt_sign_func sign_func,
mbedtls_pk_rsa_alt_key_len_func key_len_func )
{
mbedtls_rsa_alt_context *rsa_alt;
mbedtls_pk_handle_t info = &mbedtls_rsa_alt_info;
PK_VALIDATE_RET( ctx != NULL );
if( MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
if( ( ctx->pk_ctx = info->ctx_alloc_func() ) == NULL )
return( MBEDTLS_ERR_PK_ALLOC_FAILED );
ctx->pk_info = info;
rsa_alt = (mbedtls_rsa_alt_context *) ctx->pk_ctx;
rsa_alt->key = key;
rsa_alt->decrypt_func = decrypt_func;
rsa_alt->sign_func = sign_func;
rsa_alt->key_len_func = key_len_func;
return( 0 );
}
#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
/*
* Tell if a PK can do the operations of the given type
*/
int mbedtls_pk_can_do( const mbedtls_pk_context *ctx, mbedtls_pk_type_t type )
{
/* A context with null pk_info is not set up yet and can't do anything.
* For backward compatibility, also accept NULL instead of a context
* pointer. */
if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( 0 );
return( pk_info_can_do( MBEDTLS_PK_CTX_INFO( ctx ), type ) );
}
/*
* Helper for mbedtls_pk_sign and mbedtls_pk_verify
*/
static inline int pk_hashlen_helper( mbedtls_md_type_t md_alg, size_t *hash_len )
{
mbedtls_md_handle_t md_info;
if( *hash_len != 0 )
return( 0 );
if( ( md_info = mbedtls_md_info_from_type( md_alg ) ) ==
MBEDTLS_MD_INVALID_HANDLE )
{
return( -1 );
}
*hash_len = mbedtls_md_get_size( md_info );
return( 0 );
}
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
/*
* Helper to set up a restart context if needed
*/
static int pk_restart_setup( mbedtls_pk_restart_ctx *ctx,
mbedtls_pk_handle_t info )
{
/* Don't do anything if already set up or invalid */
if( ctx == NULL || MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( 0 );
/* Should never happen when we're called */
if( info->rs_alloc_func == NULL || info->rs_free_func == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
if( ( ctx->rs_ctx = info->rs_alloc_func() ) == NULL )
return( MBEDTLS_ERR_PK_ALLOC_FAILED );
ctx->pk_info = info;
return( 0 );
}
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
/*
* Verify a signature (restartable)
*/
int mbedtls_pk_verify_restartable( mbedtls_pk_context *ctx,
mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len,
mbedtls_pk_restart_ctx *rs_ctx )
{
volatile int verify_ret = MBEDTLS_ERR_PK_HW_ACCEL_FAILED;
PK_VALIDATE_RET( ctx != NULL );
PK_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && hash_len == 0 ) ||
hash != NULL );
PK_VALIDATE_RET( sig != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) ||
pk_hashlen_helper( md_alg, &hash_len ) != 0 )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
/* optimization: use non-restartable version if restart disabled */
if( rs_ctx != NULL &&
mbedtls_ecp_restart_is_enabled() &&
ctx->pk_info->verify_rs_func != NULL )
{
int ret;
if( ( ret = pk_restart_setup( rs_ctx, ctx->pk_info ) ) != 0 )
return( ret );
ret = ctx->pk_info->verify_rs_func( ctx->pk_ctx,
md_alg, hash, hash_len, sig, sig_len, rs_ctx->rs_ctx );
if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
mbedtls_pk_restart_free( rs_ctx );
return( ret );
}
#else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
(void) rs_ctx;
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
verify_ret = pk_info_verify_func( MBEDTLS_PK_CTX_INFO( ctx ),
ctx->pk_ctx, md_alg, hash, hash_len, sig, sig_len );
if( verify_ret == 0 )
{
mbedtls_platform_random_delay();
if( verify_ret == 0 )
{
return( verify_ret );
}
else
{
verify_ret = MBEDTLS_ERR_PLATFORM_FAULT_DETECTED;
}
}
return( verify_ret );
}
/*
* Verify a signature
*/
int mbedtls_pk_verify( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
return( mbedtls_pk_verify_restartable( ctx, md_alg, hash, hash_len,
sig, sig_len, NULL ) );
}
/*
* Verify a signature with options
*/
int mbedtls_pk_verify_ext( mbedtls_pk_type_t type, const void *options,
mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
const unsigned char *sig, size_t sig_len )
{
PK_VALIDATE_RET( ctx != NULL );
PK_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && hash_len == 0 ) ||
hash != NULL );
PK_VALIDATE_RET( sig != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
if( ! mbedtls_pk_can_do( ctx, type ) )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
if( type == MBEDTLS_PK_RSASSA_PSS )
{
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21)
int ret;
const mbedtls_pk_rsassa_pss_options *pss_opts;
#if SIZE_MAX > UINT_MAX
if( md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#endif /* SIZE_MAX > UINT_MAX */
if( options == NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
pss_opts = (const mbedtls_pk_rsassa_pss_options *) options;
if( sig_len < mbedtls_pk_get_len( ctx ) )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
ret = mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_pk_rsa( *ctx ),
NULL, NULL, MBEDTLS_RSA_PUBLIC,
md_alg, (unsigned int) hash_len, hash,
pss_opts->mgf1_hash_id,
pss_opts->expected_salt_len,
sig );
if( ret != 0 )
return( ret );
if( sig_len > mbedtls_pk_get_len( ctx ) )
return( MBEDTLS_ERR_PK_SIG_LEN_MISMATCH );
return( 0 );
#else
return( MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE );
#endif /* MBEDTLS_RSA_C && MBEDTLS_PKCS1_V21 */
}
/* General case: no options */
if( options != NULL )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
return( mbedtls_pk_verify( ctx, md_alg, hash, hash_len, sig, sig_len ) );
}
/*
* Make a signature (restartable)
*/
int mbedtls_pk_sign_restartable( mbedtls_pk_context *ctx,
mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
mbedtls_pk_restart_ctx *rs_ctx )
{
PK_VALIDATE_RET( ctx != NULL );
PK_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE && hash_len == 0 ) ||
hash != NULL );
PK_VALIDATE_RET( sig != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) ||
pk_hashlen_helper( md_alg, &hash_len ) != 0 )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
/* optimization: use non-restartable version if restart disabled */
if( rs_ctx != NULL &&
mbedtls_ecp_restart_is_enabled() &&
ctx->pk_info->sign_rs_func != NULL )
{
int ret;
if( ( ret = pk_restart_setup( rs_ctx, ctx->pk_info ) ) != 0 )
return( ret );
ret = ctx->pk_info->sign_rs_func( ctx->pk_ctx, md_alg,
hash, hash_len, sig, sig_len, f_rng, p_rng, rs_ctx->rs_ctx );
if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
mbedtls_pk_restart_free( rs_ctx );
return( ret );
}
#else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
(void) rs_ctx;
#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
return( pk_info_sign_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx,
md_alg, hash, hash_len, sig, sig_len, f_rng, p_rng ) );
}
/*
* Make a signature
*/
int mbedtls_pk_sign( mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
const unsigned char *hash, size_t hash_len,
unsigned char *sig, size_t *sig_len,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
return( mbedtls_pk_sign_restartable( ctx, md_alg, hash, hash_len,
sig, sig_len, f_rng, p_rng, NULL ) );
}
/*
* Decrypt message
*/
int mbedtls_pk_decrypt( mbedtls_pk_context *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
PK_VALIDATE_RET( ctx != NULL );
PK_VALIDATE_RET( input != NULL || ilen == 0 );
PK_VALIDATE_RET( output != NULL || osize == 0 );
PK_VALIDATE_RET( olen != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
return( pk_info_decrypt_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx,
input, ilen, output, olen, osize, f_rng, p_rng ) );
}
/*
* Encrypt message
*/
int mbedtls_pk_encrypt( mbedtls_pk_context *ctx,
const unsigned char *input, size_t ilen,
unsigned char *output, size_t *olen, size_t osize,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{
PK_VALIDATE_RET( ctx != NULL );
PK_VALIDATE_RET( input != NULL || ilen == 0 );
PK_VALIDATE_RET( output != NULL || osize == 0 );
PK_VALIDATE_RET( olen != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
return( pk_info_encrypt_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx,
input, ilen, output, olen, osize, f_rng, p_rng ) );
}
/*
* Check public-private key pair
*/
int mbedtls_pk_check_pair( const mbedtls_pk_context *pub, const mbedtls_pk_context *prv )
{
PK_VALIDATE_RET( pub != NULL );
PK_VALIDATE_RET( prv != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( pub ) || !MBEDTLS_PK_CTX_IS_VALID( prv ) )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
if( pk_info_type( prv->pk_info ) == MBEDTLS_PK_RSA_ALT )
{
if( pk_info_type( pub->pk_info ) != MBEDTLS_PK_RSA )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
}
else
#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
{
if( MBEDTLS_PK_CTX_INFO( pub ) != MBEDTLS_PK_CTX_INFO( prv ) )
return( MBEDTLS_ERR_PK_TYPE_MISMATCH );
}
return( pk_info_check_pair_func( MBEDTLS_PK_CTX_INFO( prv ),
pub->pk_ctx, prv->pk_ctx ) );
}
/*
* Get key size in bits
*/
size_t mbedtls_pk_get_bitlen( const mbedtls_pk_context *ctx )
{
/* For backward compatibility, accept NULL or a context that
* isn't set up yet, and return a fake value that should be safe. */
if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( 0 );
return( pk_info_get_bitlen( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx ) );
}
/*
* Export debug information
*/
int mbedtls_pk_debug( const mbedtls_pk_context *ctx, mbedtls_pk_debug_item *items )
{
PK_VALIDATE_RET( ctx != NULL );
if( !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( MBEDTLS_ERR_PK_BAD_INPUT_DATA );
return( pk_info_debug_func( MBEDTLS_PK_CTX_INFO( ctx ), ctx->pk_ctx, items ) );
}
/*
* Access the PK type name
*/
const char *mbedtls_pk_get_name( const mbedtls_pk_context *ctx )
{
if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( "invalid PK" );
return( pk_info_name( MBEDTLS_PK_CTX_INFO( ctx ) ) );
}
/*
* Access the PK type
*/
mbedtls_pk_type_t mbedtls_pk_get_type( const mbedtls_pk_context *ctx )
{
if( ctx == NULL || !MBEDTLS_PK_CTX_IS_VALID( ctx ) )
return( MBEDTLS_PK_NONE );
return( pk_info_type( MBEDTLS_PK_CTX_INFO( ctx ) ) );
}
#endif /* MBEDTLS_PK_C */