| /* symbols.c -symbol table- |
| Copyright (C) 1987-2016 Free Software Foundation, Inc. |
| |
| This file is part of GAS, the GNU Assembler. |
| |
| GAS is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GAS is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GAS; see the file COPYING. If not, write to the Free |
| Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA |
| 02110-1301, USA. */ |
| |
| /* #define DEBUG_SYMS / * to debug symbol list maintenance. */ |
| |
| #include "as.h" |
| #include "safe-ctype.h" |
| #include "obstack.h" /* For "symbols.h" */ |
| #include "subsegs.h" |
| #include "struc-symbol.h" |
| |
| /* This is non-zero if symbols are case sensitive, which is the |
| default. */ |
| int symbols_case_sensitive = 1; |
| |
| #ifndef WORKING_DOT_WORD |
| extern int new_broken_words; |
| #endif |
| |
| /* symbol-name => struct symbol pointer */ |
| static struct hash_control *sy_hash; |
| |
| /* Table of local symbols. */ |
| static struct hash_control *local_hash; |
| |
| /* Below are commented in "symbols.h". */ |
| symbolS *symbol_rootP; |
| symbolS *symbol_lastP; |
| symbolS abs_symbol; |
| symbolS dot_symbol; |
| |
| #ifdef DEBUG_SYMS |
| #define debug_verify_symchain verify_symbol_chain |
| #else |
| #define debug_verify_symchain(root, last) ((void) 0) |
| #endif |
| |
| #define DOLLAR_LABEL_CHAR '\001' |
| #define LOCAL_LABEL_CHAR '\002' |
| |
| #ifndef TC_LABEL_IS_LOCAL |
| #define TC_LABEL_IS_LOCAL(name) 0 |
| #endif |
| |
| struct obstack notes; |
| #ifdef TE_PE |
| /* The name of an external symbol which is |
| used to make weak PE symbol names unique. */ |
| const char * an_external_name; |
| #endif |
| |
| static const char *save_symbol_name (const char *); |
| static void fb_label_init (void); |
| static long dollar_label_instance (long); |
| static long fb_label_instance (long); |
| |
| static void print_binary (FILE *, const char *, expressionS *); |
| |
| /* Return a pointer to a new symbol. Die if we can't make a new |
| symbol. Fill in the symbol's values. Add symbol to end of symbol |
| chain. |
| |
| This function should be called in the general case of creating a |
| symbol. However, if the output file symbol table has already been |
| set, and you are certain that this symbol won't be wanted in the |
| output file, you can call symbol_create. */ |
| |
| symbolS * |
| symbol_new (const char *name, segT segment, valueT valu, fragS *frag) |
| { |
| symbolS *symbolP = symbol_create (name, segment, valu, frag); |
| |
| /* Link to end of symbol chain. */ |
| { |
| extern int symbol_table_frozen; |
| if (symbol_table_frozen) |
| abort (); |
| } |
| symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP); |
| |
| return symbolP; |
| } |
| |
| /* Save a symbol name on a permanent obstack, and convert it according |
| to the object file format. */ |
| |
| static const char * |
| save_symbol_name (const char *name) |
| { |
| size_t name_length; |
| char *ret; |
| |
| name_length = strlen (name) + 1; /* +1 for \0. */ |
| obstack_grow (¬es, name, name_length); |
| ret = (char *) obstack_finish (¬es); |
| |
| #ifdef tc_canonicalize_symbol_name |
| ret = tc_canonicalize_symbol_name (ret); |
| #endif |
| |
| if (! symbols_case_sensitive) |
| { |
| char *s; |
| |
| for (s = ret; *s != '\0'; s++) |
| *s = TOUPPER (*s); |
| } |
| |
| return ret; |
| } |
| |
| symbolS * |
| symbol_create (const char *name, /* It is copied, the caller can destroy/modify. */ |
| segT segment, /* Segment identifier (SEG_<something>). */ |
| valueT valu, /* Symbol value. */ |
| fragS *frag /* Associated fragment. */) |
| { |
| const char *preserved_copy_of_name; |
| symbolS *symbolP; |
| |
| preserved_copy_of_name = save_symbol_name (name); |
| |
| symbolP = (symbolS *) obstack_alloc (¬es, sizeof (symbolS)); |
| |
| /* symbol must be born in some fixed state. This seems as good as any. */ |
| memset (symbolP, 0, sizeof (symbolS)); |
| |
| symbolP->bsym = bfd_make_empty_symbol (stdoutput); |
| if (symbolP->bsym == NULL) |
| as_fatal ("bfd_make_empty_symbol: %s", bfd_errmsg (bfd_get_error ())); |
| S_SET_NAME (symbolP, preserved_copy_of_name); |
| |
| S_SET_SEGMENT (symbolP, segment); |
| S_SET_VALUE (symbolP, valu); |
| symbol_clear_list_pointers (symbolP); |
| |
| symbolP->sy_frag = frag; |
| |
| obj_symbol_new_hook (symbolP); |
| |
| #ifdef tc_symbol_new_hook |
| tc_symbol_new_hook (symbolP); |
| #endif |
| |
| return symbolP; |
| } |
| |
| |
| /* Local symbol support. If we can get away with it, we keep only a |
| small amount of information for local symbols. */ |
| |
| static symbolS *local_symbol_convert (struct local_symbol *); |
| |
| /* Used for statistics. */ |
| |
| static unsigned long local_symbol_count; |
| static unsigned long local_symbol_conversion_count; |
| |
| /* This macro is called with a symbol argument passed by reference. |
| It returns whether this is a local symbol. If necessary, it |
| changes its argument to the real symbol. */ |
| |
| #define LOCAL_SYMBOL_CHECK(s) \ |
| (s->sy_flags.sy_local_symbol \ |
| ? (local_symbol_converted_p ((struct local_symbol *) s) \ |
| ? (s = local_symbol_get_real_symbol ((struct local_symbol *) s), \ |
| 0) \ |
| : 1) \ |
| : 0) |
| |
| /* Create a local symbol and insert it into the local hash table. */ |
| |
| struct local_symbol * |
| local_symbol_make (const char *name, segT section, valueT val, fragS *frag) |
| { |
| const char *name_copy; |
| struct local_symbol *ret; |
| |
| ++local_symbol_count; |
| |
| name_copy = save_symbol_name (name); |
| |
| ret = (struct local_symbol *) obstack_alloc (¬es, sizeof *ret); |
| ret->lsy_flags.sy_local_symbol = 1; |
| ret->lsy_flags.sy_resolved = 0; |
| ret->lsy_name = name_copy; |
| ret->lsy_section = section; |
| local_symbol_set_frag (ret, frag); |
| ret->lsy_value = val; |
| |
| hash_jam (local_hash, name_copy, (void *) ret); |
| |
| return ret; |
| } |
| |
| /* Convert a local symbol into a real symbol. Note that we do not |
| reclaim the space used by the local symbol. */ |
| |
| static symbolS * |
| local_symbol_convert (struct local_symbol *locsym) |
| { |
| symbolS *ret; |
| |
| gas_assert (locsym->lsy_flags.sy_local_symbol); |
| if (local_symbol_converted_p (locsym)) |
| return local_symbol_get_real_symbol (locsym); |
| |
| ++local_symbol_conversion_count; |
| |
| ret = symbol_new (locsym->lsy_name, locsym->lsy_section, locsym->lsy_value, |
| local_symbol_get_frag (locsym)); |
| |
| if (local_symbol_resolved_p (locsym)) |
| ret->sy_flags.sy_resolved = 1; |
| |
| /* Local symbols are always either defined or used. */ |
| ret->sy_flags.sy_used = 1; |
| |
| #ifdef TC_LOCAL_SYMFIELD_CONVERT |
| TC_LOCAL_SYMFIELD_CONVERT (locsym, ret); |
| #endif |
| |
| symbol_table_insert (ret); |
| |
| local_symbol_mark_converted (locsym); |
| local_symbol_set_real_symbol (locsym, ret); |
| |
| hash_jam (local_hash, locsym->lsy_name, NULL); |
| |
| return ret; |
| } |
| |
| static void |
| define_sym_at_dot (symbolS *symbolP) |
| { |
| symbolP->sy_frag = frag_now; |
| S_SET_VALUE (symbolP, (valueT) frag_now_fix ()); |
| S_SET_SEGMENT (symbolP, now_seg); |
| } |
| |
| /* We have just seen "<name>:". |
| Creates a struct symbol unless it already exists. |
| |
| Gripes if we are redefining a symbol incompatibly (and ignores it). */ |
| |
| symbolS * |
| colon (/* Just seen "x:" - rattle symbols & frags. */ |
| const char *sym_name /* Symbol name, as a canonical string. */ |
| /* We copy this string: OK to alter later. */) |
| { |
| symbolS *symbolP; /* Symbol we are working with. */ |
| |
| /* Sun local labels go out of scope whenever a non-local symbol is |
| defined. */ |
| if (LOCAL_LABELS_DOLLAR |
| && !bfd_is_local_label_name (stdoutput, sym_name)) |
| dollar_label_clear (); |
| |
| #ifndef WORKING_DOT_WORD |
| if (new_broken_words) |
| { |
| struct broken_word *a; |
| int possible_bytes; |
| fragS *frag_tmp; |
| char *frag_opcode; |
| |
| if (now_seg == absolute_section) |
| { |
| as_bad (_("cannot define symbol `%s' in absolute section"), sym_name); |
| return NULL; |
| } |
| |
| possible_bytes = (md_short_jump_size |
| + new_broken_words * md_long_jump_size); |
| |
| frag_tmp = frag_now; |
| frag_opcode = frag_var (rs_broken_word, |
| possible_bytes, |
| possible_bytes, |
| (relax_substateT) 0, |
| (symbolS *) broken_words, |
| (offsetT) 0, |
| NULL); |
| |
| /* We want to store the pointer to where to insert the jump |
| table in the fr_opcode of the rs_broken_word frag. This |
| requires a little hackery. */ |
| while (frag_tmp |
| && (frag_tmp->fr_type != rs_broken_word |
| || frag_tmp->fr_opcode)) |
| frag_tmp = frag_tmp->fr_next; |
| know (frag_tmp); |
| frag_tmp->fr_opcode = frag_opcode; |
| new_broken_words = 0; |
| |
| for (a = broken_words; a && a->dispfrag == 0; a = a->next_broken_word) |
| a->dispfrag = frag_tmp; |
| } |
| #endif /* WORKING_DOT_WORD */ |
| |
| #ifdef obj_frob_colon |
| obj_frob_colon (sym_name); |
| #endif |
| |
| if ((symbolP = symbol_find (sym_name)) != 0) |
| { |
| S_CLEAR_WEAKREFR (symbolP); |
| #ifdef RESOLVE_SYMBOL_REDEFINITION |
| if (RESOLVE_SYMBOL_REDEFINITION (symbolP)) |
| return symbolP; |
| #endif |
| /* Now check for undefined symbols. */ |
| if (LOCAL_SYMBOL_CHECK (symbolP)) |
| { |
| struct local_symbol *locsym = (struct local_symbol *) symbolP; |
| |
| if (locsym->lsy_section != undefined_section |
| && (local_symbol_get_frag (locsym) != frag_now |
| || locsym->lsy_section != now_seg |
| || locsym->lsy_value != frag_now_fix ())) |
| { |
| as_bad (_("symbol `%s' is already defined"), sym_name); |
| return symbolP; |
| } |
| |
| locsym->lsy_section = now_seg; |
| local_symbol_set_frag (locsym, frag_now); |
| locsym->lsy_value = frag_now_fix (); |
| } |
| else if (!(S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP)) |
| || S_IS_COMMON (symbolP) |
| || S_IS_VOLATILE (symbolP)) |
| { |
| if (S_IS_VOLATILE (symbolP)) |
| { |
| symbolP = symbol_clone (symbolP, 1); |
| S_SET_VALUE (symbolP, 0); |
| S_CLEAR_VOLATILE (symbolP); |
| } |
| if (S_GET_VALUE (symbolP) == 0) |
| { |
| define_sym_at_dot (symbolP); |
| #ifdef N_UNDF |
| know (N_UNDF == 0); |
| #endif /* if we have one, it better be zero. */ |
| |
| } |
| else |
| { |
| /* There are still several cases to check: |
| |
| A .comm/.lcomm symbol being redefined as initialized |
| data is OK |
| |
| A .comm/.lcomm symbol being redefined with a larger |
| size is also OK |
| |
| This only used to be allowed on VMS gas, but Sun cc |
| on the sparc also depends on it. */ |
| |
| if (((!S_IS_DEBUG (symbolP) |
| && (!S_IS_DEFINED (symbolP) || S_IS_COMMON (symbolP)) |
| && S_IS_EXTERNAL (symbolP)) |
| || S_GET_SEGMENT (symbolP) == bss_section) |
| && (now_seg == data_section |
| || now_seg == bss_section |
| || now_seg == S_GET_SEGMENT (symbolP))) |
| { |
| /* Select which of the 2 cases this is. */ |
| if (now_seg != data_section) |
| { |
| /* New .comm for prev .comm symbol. |
| |
| If the new size is larger we just change its |
| value. If the new size is smaller, we ignore |
| this symbol. */ |
| if (S_GET_VALUE (symbolP) |
| < ((unsigned) frag_now_fix ())) |
| { |
| S_SET_VALUE (symbolP, (valueT) frag_now_fix ()); |
| } |
| } |
| else |
| { |
| /* It is a .comm/.lcomm being converted to initialized |
| data. */ |
| define_sym_at_dot (symbolP); |
| } |
| } |
| else |
| { |
| #if (!defined (OBJ_AOUT) && !defined (OBJ_MAYBE_AOUT) \ |
| && !defined (OBJ_BOUT) && !defined (OBJ_MAYBE_BOUT)) |
| static const char *od_buf = ""; |
| #else |
| char od_buf[100]; |
| od_buf[0] = '\0'; |
| if (OUTPUT_FLAVOR == bfd_target_aout_flavour) |
| sprintf (od_buf, "%d.%d.", |
| S_GET_OTHER (symbolP), |
| S_GET_DESC (symbolP)); |
| #endif |
| as_bad (_("symbol `%s' is already defined as \"%s\"/%s%ld"), |
| sym_name, |
| segment_name (S_GET_SEGMENT (symbolP)), |
| od_buf, |
| (long) S_GET_VALUE (symbolP)); |
| } |
| } /* if the undefined symbol has no value */ |
| } |
| else |
| { |
| /* Don't blow up if the definition is the same. */ |
| if (!(frag_now == symbolP->sy_frag |
| && S_GET_VALUE (symbolP) == frag_now_fix () |
| && S_GET_SEGMENT (symbolP) == now_seg)) |
| { |
| as_bad (_("symbol `%s' is already defined"), sym_name); |
| symbolP = symbol_clone (symbolP, 0); |
| define_sym_at_dot (symbolP); |
| } |
| } |
| |
| } |
| else if (! flag_keep_locals && bfd_is_local_label_name (stdoutput, sym_name)) |
| { |
| symbolP = (symbolS *) local_symbol_make (sym_name, now_seg, |
| (valueT) frag_now_fix (), |
| frag_now); |
| } |
| else |
| { |
| symbolP = symbol_new (sym_name, now_seg, (valueT) frag_now_fix (), |
| frag_now); |
| |
| symbol_table_insert (symbolP); |
| } |
| |
| if (mri_common_symbol != NULL) |
| { |
| /* This symbol is actually being defined within an MRI common |
| section. This requires special handling. */ |
| if (LOCAL_SYMBOL_CHECK (symbolP)) |
| symbolP = local_symbol_convert ((struct local_symbol *) symbolP); |
| symbolP->sy_value.X_op = O_symbol; |
| symbolP->sy_value.X_add_symbol = mri_common_symbol; |
| symbolP->sy_value.X_add_number = S_GET_VALUE (mri_common_symbol); |
| symbolP->sy_frag = &zero_address_frag; |
| S_SET_SEGMENT (symbolP, expr_section); |
| symbolP->sy_flags.sy_mri_common = 1; |
| } |
| |
| #ifdef tc_frob_label |
| tc_frob_label (symbolP); |
| #endif |
| #ifdef obj_frob_label |
| obj_frob_label (symbolP); |
| #endif |
| |
| return symbolP; |
| } |
| |
| /* Die if we can't insert the symbol. */ |
| |
| void |
| symbol_table_insert (symbolS *symbolP) |
| { |
| const char *error_string; |
| |
| know (symbolP); |
| know (S_GET_NAME (symbolP)); |
| |
| if (LOCAL_SYMBOL_CHECK (symbolP)) |
| { |
| error_string = hash_jam (local_hash, S_GET_NAME (symbolP), |
| (void *) symbolP); |
| if (error_string != NULL) |
| as_fatal (_("inserting \"%s\" into symbol table failed: %s"), |
| S_GET_NAME (symbolP), error_string); |
| return; |
| } |
| |
| if ((error_string = hash_jam (sy_hash, S_GET_NAME (symbolP), (void *) symbolP))) |
| { |
| as_fatal (_("inserting \"%s\" into symbol table failed: %s"), |
| S_GET_NAME (symbolP), error_string); |
| } /* on error */ |
| } |
| |
| /* If a symbol name does not exist, create it as undefined, and insert |
| it into the symbol table. Return a pointer to it. */ |
| |
| symbolS * |
| symbol_find_or_make (const char *name) |
| { |
| symbolS *symbolP; |
| |
| symbolP = symbol_find (name); |
| |
| if (symbolP == NULL) |
| { |
| if (! flag_keep_locals && bfd_is_local_label_name (stdoutput, name)) |
| { |
| symbolP = md_undefined_symbol ((char *) name); |
| if (symbolP != NULL) |
| return symbolP; |
| |
| symbolP = (symbolS *) local_symbol_make (name, undefined_section, |
| (valueT) 0, |
| &zero_address_frag); |
| return symbolP; |
| } |
| |
| symbolP = symbol_make (name); |
| |
| symbol_table_insert (symbolP); |
| } /* if symbol wasn't found */ |
| |
| return (symbolP); |
| } |
| |
| symbolS * |
| symbol_make (const char *name) |
| { |
| symbolS *symbolP; |
| |
| /* Let the machine description default it, e.g. for register names. */ |
| symbolP = md_undefined_symbol ((char *) name); |
| |
| if (!symbolP) |
| symbolP = symbol_new (name, undefined_section, (valueT) 0, &zero_address_frag); |
| |
| return (symbolP); |
| } |
| |
| symbolS * |
| symbol_clone (symbolS *orgsymP, int replace) |
| { |
| symbolS *newsymP; |
| asymbol *bsymorg, *bsymnew; |
| |
| /* Make sure we never clone the dot special symbol. */ |
| gas_assert (orgsymP != &dot_symbol); |
| |
| /* Running local_symbol_convert on a clone that's not the one currently |
| in local_hash would incorrectly replace the hash entry. Thus the |
| symbol must be converted here. Note that the rest of the function |
| depends on not encountering an unconverted symbol. */ |
| if (LOCAL_SYMBOL_CHECK (orgsymP)) |
| orgsymP = local_symbol_convert ((struct local_symbol *) orgsymP); |
| bsymorg = orgsymP->bsym; |
| |
| newsymP = (symbolS *) obstack_alloc (¬es, sizeof (*newsymP)); |
| *newsymP = *orgsymP; |
| bsymnew = bfd_make_empty_symbol (bfd_asymbol_bfd (bsymorg)); |
| if (bsymnew == NULL) |
| as_fatal ("bfd_make_empty_symbol: %s", bfd_errmsg (bfd_get_error ())); |
| newsymP->bsym = bsymnew; |
| bsymnew->name = bsymorg->name; |
| bsymnew->flags = bsymorg->flags & ~BSF_SECTION_SYM; |
| bsymnew->section = bsymorg->section; |
| bfd_copy_private_symbol_data (bfd_asymbol_bfd (bsymorg), bsymorg, |
| bfd_asymbol_bfd (bsymnew), bsymnew); |
| |
| #ifdef obj_symbol_clone_hook |
| obj_symbol_clone_hook (newsymP, orgsymP); |
| #endif |
| |
| #ifdef tc_symbol_clone_hook |
| tc_symbol_clone_hook (newsymP, orgsymP); |
| #endif |
| |
| if (replace) |
| { |
| if (symbol_rootP == orgsymP) |
| symbol_rootP = newsymP; |
| else if (orgsymP->sy_previous) |
| { |
| orgsymP->sy_previous->sy_next = newsymP; |
| orgsymP->sy_previous = NULL; |
| } |
| if (symbol_lastP == orgsymP) |
| symbol_lastP = newsymP; |
| else if (orgsymP->sy_next) |
| orgsymP->sy_next->sy_previous = newsymP; |
| |
| /* Symbols that won't be output can't be external. */ |
| S_CLEAR_EXTERNAL (orgsymP); |
| orgsymP->sy_previous = orgsymP->sy_next = orgsymP; |
| debug_verify_symchain (symbol_rootP, symbol_lastP); |
| |
| symbol_table_insert (newsymP); |
| } |
| else |
| { |
| /* Symbols that won't be output can't be external. */ |
| S_CLEAR_EXTERNAL (newsymP); |
| newsymP->sy_previous = newsymP->sy_next = newsymP; |
| } |
| |
| return newsymP; |
| } |
| |
| /* Referenced symbols, if they are forward references, need to be cloned |
| (without replacing the original) so that the value of the referenced |
| symbols at the point of use . */ |
| |
| #undef symbol_clone_if_forward_ref |
| symbolS * |
| symbol_clone_if_forward_ref (symbolS *symbolP, int is_forward) |
| { |
| if (symbolP && !LOCAL_SYMBOL_CHECK (symbolP)) |
| { |
| symbolS *add_symbol = symbolP->sy_value.X_add_symbol; |
| symbolS *op_symbol = symbolP->sy_value.X_op_symbol; |
| |
| if (symbolP->sy_flags.sy_forward_ref) |
| is_forward = 1; |
| |
| if (is_forward) |
| { |
| /* assign_symbol() clones volatile symbols; pre-existing expressions |
| hold references to the original instance, but want the current |
| value. Just repeat the lookup. */ |
| if (add_symbol && S_IS_VOLATILE (add_symbol)) |
| add_symbol = symbol_find_exact (S_GET_NAME (add_symbol)); |
| if (op_symbol && S_IS_VOLATILE (op_symbol)) |
| op_symbol = symbol_find_exact (S_GET_NAME (op_symbol)); |
| } |
| |
| /* Re-using sy_resolving here, as this routine cannot get called from |
| symbol resolution code. */ |
| if ((symbolP->bsym->section == expr_section |
| || symbolP->sy_flags.sy_forward_ref) |
| && !symbolP->sy_flags.sy_resolving) |
| { |
| symbolP->sy_flags.sy_resolving = 1; |
| add_symbol = symbol_clone_if_forward_ref (add_symbol, is_forward); |
| op_symbol = symbol_clone_if_forward_ref (op_symbol, is_forward); |
| symbolP->sy_flags.sy_resolving = 0; |
| } |
| |
| if (symbolP->sy_flags.sy_forward_ref |
| || add_symbol != symbolP->sy_value.X_add_symbol |
| || op_symbol != symbolP->sy_value.X_op_symbol) |
| { |
| if (symbolP != &dot_symbol) |
| { |
| symbolP = symbol_clone (symbolP, 0); |
| symbolP->sy_flags.sy_resolving = 0; |
| } |
| else |
| { |
| symbolP = symbol_temp_new_now (); |
| #ifdef tc_new_dot_label |
| tc_new_dot_label (symbolP); |
| #endif |
| } |
| } |
| |
| symbolP->sy_value.X_add_symbol = add_symbol; |
| symbolP->sy_value.X_op_symbol = op_symbol; |
| } |
| |
| return symbolP; |
| } |
| |
| symbolS * |
| symbol_temp_new (segT seg, valueT ofs, fragS *frag) |
| { |
| return symbol_new (FAKE_LABEL_NAME, seg, ofs, frag); |
| } |
| |
| symbolS * |
| symbol_temp_new_now (void) |
| { |
| return symbol_temp_new (now_seg, frag_now_fix (), frag_now); |
| } |
| |
| symbolS * |
| symbol_temp_make (void) |
| { |
| return symbol_make (FAKE_LABEL_NAME); |
| } |
| |
| /* Implement symbol table lookup. |
| In: A symbol's name as a string: '\0' can't be part of a symbol name. |
| Out: NULL if the name was not in the symbol table, else the address |
| of a struct symbol associated with that name. */ |
| |
| symbolS * |
| symbol_find_exact (const char *name) |
| { |
| return symbol_find_exact_noref (name, 0); |
| } |
| |
| symbolS * |
| symbol_find_exact_noref (const char *name, int noref) |
| { |
| struct local_symbol *locsym; |
| symbolS* sym; |
| |
| locsym = (struct local_symbol *) hash_find (local_hash, name); |
| if (locsym != NULL) |
| return (symbolS *) locsym; |
| |
| sym = ((symbolS *) hash_find (sy_hash, name)); |
| |
| /* Any references to the symbol, except for the reference in |
| .weakref, must clear this flag, such that the symbol does not |
| turn into a weak symbol. Note that we don't have to handle the |
| local_symbol case, since a weakrefd is always promoted out of the |
| local_symbol table when it is turned into a weak symbol. */ |
| if (sym && ! noref) |
| S_CLEAR_WEAKREFD (sym); |
| |
| return sym; |
| } |
| |
| symbolS * |
| symbol_find (const char *name) |
| { |
| return symbol_find_noref (name, 0); |
| } |
| |
| symbolS * |
| symbol_find_noref (const char *name, int noref) |
| { |
| symbolS * result; |
| char * copy = NULL; |
| |
| #ifdef tc_canonicalize_symbol_name |
| { |
| copy = xstrdup (name); |
| name = tc_canonicalize_symbol_name (copy); |
| } |
| #endif |
| |
| if (! symbols_case_sensitive) |
| { |
| const char *orig; |
| char *copy2 = NULL; |
| unsigned char c; |
| |
| orig = name; |
| if (copy != NULL) |
| copy2 = copy; |
| name = copy = XNEWVEC (char, strlen (name) + 1); |
| |
| while ((c = *orig++) != '\0') |
| *copy++ = TOUPPER (c); |
| *copy = '\0'; |
| |
| if (copy2 != NULL) |
| free (copy2); |
| copy = (char *) name; |
| } |
| |
| result = symbol_find_exact_noref (name, noref); |
| if (copy != NULL) |
| free (copy); |
| return result; |
| } |
| |
| /* Once upon a time, symbols were kept in a singly linked list. At |
| least coff needs to be able to rearrange them from time to time, for |
| which a doubly linked list is much more convenient. Loic did these |
| as macros which seemed dangerous to me so they're now functions. |
| xoxorich. */ |
| |
| /* Link symbol ADDME after symbol TARGET in the chain. */ |
| |
| void |
| symbol_append (symbolS *addme, symbolS *target, |
| symbolS **rootPP, symbolS **lastPP) |
| { |
| if (LOCAL_SYMBOL_CHECK (addme)) |
| abort (); |
| if (target != NULL && LOCAL_SYMBOL_CHECK (target)) |
| abort (); |
| |
| if (target == NULL) |
| { |
| know (*rootPP == NULL); |
| know (*lastPP == NULL); |
| addme->sy_next = NULL; |
| addme->sy_previous = NULL; |
| *rootPP = addme; |
| *lastPP = addme; |
| return; |
| } /* if the list is empty */ |
| |
| if (target->sy_next != NULL) |
| { |
| target->sy_next->sy_previous = addme; |
| } |
| else |
| { |
| know (*lastPP == target); |
| *lastPP = addme; |
| } /* if we have a next */ |
| |
| addme->sy_next = target->sy_next; |
| target->sy_next = addme; |
| addme->sy_previous = target; |
| |
| debug_verify_symchain (symbol_rootP, symbol_lastP); |
| } |
| |
| /* Set the chain pointers of SYMBOL to null. */ |
| |
| void |
| symbol_clear_list_pointers (symbolS *symbolP) |
| { |
| if (LOCAL_SYMBOL_CHECK (symbolP)) |
| abort (); |
| symbolP->sy_next = NULL; |
| symbolP->sy_previous = NULL; |
| } |
| |
| /* Remove SYMBOLP from the list. */ |
| |
| void |
| symbol_remove (symbolS *symbolP, symbolS **rootPP, symbolS **lastPP) |
| { |
| if (LOCAL_SYMBOL_CHECK (symbolP)) |
| abort (); |
| |
| if (symbolP == *rootPP) |
| { |
| *rootPP = symbolP->sy_next; |
| } /* if it was the root */ |
| |
| if (symbolP == *lastPP) |
| { |
| *lastPP = symbolP->sy_previous; |
| } /* if it was the tail */ |
| |
| if (symbolP->sy_next != NULL) |
| { |
| symbolP->sy_next->sy_previous = symbolP->sy_previous; |
| } /* if not last */ |
| |
| if (symbolP->sy_previous != NULL) |
| { |
| symbolP->sy_previous->sy_next = symbolP->sy_next; |
| } /* if not first */ |
| |
| debug_verify_symchain (*rootPP, *lastPP); |
| } |
| |
| /* Link symbol ADDME before symbol TARGET in the chain. */ |
| |
| void |
| symbol_insert (symbolS *addme, symbolS *target, |
| symbolS **rootPP, symbolS **lastPP ATTRIBUTE_UNUSED) |
| { |
| if (LOCAL_SYMBOL_CHECK (addme)) |
| abort (); |
| if (LOCAL_SYMBOL_CHECK (target)) |
| abort (); |
| |
| if (target->sy_previous != NULL) |
| { |
| target->sy_previous->sy_next = addme; |
| } |
| else |
| { |
| know (*rootPP == target); |
| *rootPP = addme; |
| } /* if not first */ |
| |
| addme->sy_previous = target->sy_previous; |
| target->sy_previous = addme; |
| addme->sy_next = target; |
| |
| debug_verify_symchain (*rootPP, *lastPP); |
| } |
| |
| void |
| verify_symbol_chain (symbolS *rootP, symbolS *lastP) |
| { |
| symbolS *symbolP = rootP; |
| |
| if (symbolP == NULL) |
| return; |
| |
| for (; symbol_next (symbolP) != NULL; symbolP = symbol_next (symbolP)) |
| { |
| gas_assert (symbolP->bsym != NULL); |
| gas_assert (symbolP->sy_flags.sy_local_symbol == 0); |
| gas_assert (symbolP->sy_next->sy_previous == symbolP); |
| } |
| |
| gas_assert (lastP == symbolP); |
| } |
| |
| #ifdef OBJ_COMPLEX_RELC |
| |
| static int |
| use_complex_relocs_for (symbolS * symp) |
| { |
| switch (symp->sy_value.X_op) |
| { |
| case O_constant: |
| return 0; |
| |
| case O_symbol: |
| case O_symbol_rva: |
| case O_uminus: |
| case O_bit_not: |
| case O_logical_not: |
| if ( (S_IS_COMMON (symp->sy_value.X_add_symbol) |
| || S_IS_LOCAL (symp->sy_value.X_add_symbol)) |
| && |
| (S_IS_DEFINED (symp->sy_value.X_add_symbol) |
| && S_GET_SEGMENT (symp->sy_value.X_add_symbol) != expr_section)) |
| return 0; |
| break; |
| |
| case O_multiply: |
| case O_divide: |
| case O_modulus: |
| case O_left_shift: |
| case O_right_shift: |
| case O_bit_inclusive_or: |
| case O_bit_or_not: |
| case O_bit_exclusive_or: |
| case O_bit_and: |
| case O_add: |
| case O_subtract: |
| case O_eq: |
| case O_ne: |
| case O_lt: |
| case O_le: |
| case O_ge: |
| case O_gt: |
| case O_logical_and: |
| case O_logical_or: |
| |
| if ( (S_IS_COMMON (symp->sy_value.X_add_symbol) |
| || S_IS_LOCAL (symp->sy_value.X_add_symbol)) |
| && |
| (S_IS_COMMON (symp->sy_value.X_op_symbol) |
| || S_IS_LOCAL (symp->sy_value.X_op_symbol)) |
| |
| && S_IS_DEFINED (symp->sy_value.X_add_symbol) |
| && S_IS_DEFINED (symp->sy_value.X_op_symbol) |
| && S_GET_SEGMENT (symp->sy_value.X_add_symbol) != expr_section |
| && S_GET_SEGMENT (symp->sy_value.X_op_symbol) != expr_section) |
| return 0; |
| break; |
| |
| default: |
| break; |
| } |
| return 1; |
| } |
| #endif |
| |
| static void |
| report_op_error (symbolS *symp, symbolS *left, operatorT op, symbolS *right) |
| { |
| const char *file; |
| unsigned int line; |
| segT seg_left = left ? S_GET_SEGMENT (left) : 0; |
| segT seg_right = S_GET_SEGMENT (right); |
| const char *opname; |
| |
| switch (op) |
| { |
| default: |
| abort (); |
| return; |
| |
| case O_uminus: opname = "-"; break; |
| case O_bit_not: opname = "~"; break; |
| case O_logical_not: opname = "!"; break; |
| case O_multiply: opname = "*"; break; |
| case O_divide: opname = "/"; break; |
| case O_modulus: opname = "%"; break; |
| case O_left_shift: opname = "<<"; break; |
| case O_right_shift: opname = ">>"; break; |
| case O_bit_inclusive_or: opname = "|"; break; |
| case O_bit_or_not: opname = "|~"; break; |
| case O_bit_exclusive_or: opname = "^"; break; |
| case O_bit_and: opname = "&"; break; |
| case O_add: opname = "+"; break; |
| case O_subtract: opname = "-"; break; |
| case O_eq: opname = "=="; break; |
| case O_ne: opname = "!="; break; |
| case O_lt: opname = "<"; break; |
| case O_le: opname = "<="; break; |
| case O_ge: opname = ">="; break; |
| case O_gt: opname = ">"; break; |
| case O_logical_and: opname = "&&"; break; |
| case O_logical_or: opname = "||"; break; |
| } |
| |
| if (expr_symbol_where (symp, &file, &line)) |
| { |
| if (left) |
| as_bad_where (file, line, |
| _("invalid operands (%s and %s sections) for `%s'"), |
| seg_left->name, seg_right->name, opname); |
| else |
| as_bad_where (file, line, |
| _("invalid operand (%s section) for `%s'"), |
| seg_right->name, opname); |
| } |
| else |
| { |
| const char *sname = S_GET_NAME (symp); |
| |
| if (left) |
| as_bad (_("invalid operands (%s and %s sections) for `%s' when setting `%s'"), |
| seg_left->name, seg_right->name, opname, sname); |
| else |
| as_bad (_("invalid operand (%s section) for `%s' when setting `%s'"), |
| seg_right->name, opname, sname); |
| } |
| } |
| |
| /* Resolve the value of a symbol. This is called during the final |
| pass over the symbol table to resolve any symbols with complex |
| values. */ |
| |
| valueT |
| resolve_symbol_value (symbolS *symp) |
| { |
| int resolved; |
| valueT final_val = 0; |
| segT final_seg; |
| |
| if (LOCAL_SYMBOL_CHECK (symp)) |
| { |
| struct local_symbol *locsym = (struct local_symbol *) symp; |
| |
| final_val = locsym->lsy_value; |
| if (local_symbol_resolved_p (locsym)) |
| return final_val; |
| |
| final_val += local_symbol_get_frag (locsym)->fr_address / OCTETS_PER_BYTE; |
| |
| if (finalize_syms) |
| { |
| locsym->lsy_value = final_val; |
| local_symbol_mark_resolved (locsym); |
| } |
| |
| return final_val; |
| } |
| |
| if (symp->sy_flags.sy_resolved) |
| { |
| if (symp->sy_value.X_op == O_constant) |
| return (valueT) symp->sy_value.X_add_number; |
| else |
| return 0; |
| } |
| |
| resolved = 0; |
| final_seg = S_GET_SEGMENT (symp); |
| |
| if (symp->sy_flags.sy_resolving) |
| { |
| if (finalize_syms) |
| as_bad (_("symbol definition loop encountered at `%s'"), |
| S_GET_NAME (symp)); |
| final_val = 0; |
| resolved = 1; |
| } |
| #ifdef OBJ_COMPLEX_RELC |
| else if (final_seg == expr_section |
| && use_complex_relocs_for (symp)) |
| { |
| symbolS * relc_symbol = NULL; |
| char * relc_symbol_name = NULL; |
| |
| relc_symbol_name = symbol_relc_make_expr (& symp->sy_value); |
| |
| /* For debugging, print out conversion input & output. */ |
| #ifdef DEBUG_SYMS |
| print_expr (& symp->sy_value); |
| if (relc_symbol_name) |
| fprintf (stderr, "-> relc symbol: %s\n", relc_symbol_name); |
| #endif |
| |
| if (relc_symbol_name != NULL) |
| relc_symbol = symbol_new (relc_symbol_name, undefined_section, |
| 0, & zero_address_frag); |
| |
| if (relc_symbol == NULL) |
| { |
| as_bad (_("cannot convert expression symbol %s to complex relocation"), |
| S_GET_NAME (symp)); |
| resolved = 0; |
| } |
| else |
| { |
| symbol_table_insert (relc_symbol); |
| |
| /* S_CLEAR_EXTERNAL (relc_symbol); */ |
| if (symp->bsym->flags & BSF_SRELC) |
| relc_symbol->bsym->flags |= BSF_SRELC; |
| else |
| relc_symbol->bsym->flags |= BSF_RELC; |
| /* symp->bsym->flags |= BSF_RELC; */ |
| copy_symbol_attributes (symp, relc_symbol); |
| symp->sy_value.X_op = O_symbol; |
| symp->sy_value.X_add_symbol = relc_symbol; |
| symp->sy_value.X_add_number = 0; |
| resolved = 1; |
| } |
| |
| final_seg = undefined_section; |
| goto exit_dont_set_value; |
| } |
| #endif |
| else |
| { |
| symbolS *add_symbol, *op_symbol; |
| offsetT left, right; |
| segT seg_left, seg_right; |
| operatorT op; |
| int move_seg_ok; |
| |
| symp->sy_flags.sy_resolving = 1; |
| |
| /* Help out with CSE. */ |
| add_symbol = symp->sy_value.X_add_symbol; |
| op_symbol = symp->sy_value.X_op_symbol; |
| final_val = symp->sy_value.X_add_number; |
| op = symp->sy_value.X_op; |
| |
| switch (op) |
| { |
| default: |
| BAD_CASE (op); |
| break; |
| |
| case O_absent: |
| final_val = 0; |
| /* Fall through. */ |
| |
| case O_constant: |
| final_val += symp->sy_frag->fr_address / OCTETS_PER_BYTE; |
| if (final_seg == expr_section) |
| final_seg = absolute_section; |
| /* Fall through. */ |
| |
| case O_register: |
| resolved = 1; |
| break; |
| |
| case O_symbol: |
| case O_symbol_rva: |
| left = resolve_symbol_value (add_symbol); |
| seg_left = S_GET_SEGMENT (add_symbol); |
| if (finalize_syms) |
| symp->sy_value.X_op_symbol = NULL; |
| |
| do_symbol: |
| if (S_IS_WEAKREFR (symp)) |
| { |
| gas_assert (final_val == 0); |
| if (S_IS_WEAKREFR (add_symbol)) |
| { |
| gas_assert (add_symbol->sy_value.X_op == O_symbol |
| && add_symbol->sy_value.X_add_number == 0); |
| add_symbol = add_symbol->sy_value.X_add_symbol; |
| gas_assert (! S_IS_WEAKREFR (add_symbol)); |
| symp->sy_value.X_add_symbol = add_symbol; |
| } |
| } |
| |
| if (symp->sy_flags.sy_mri_common) |
| { |
| /* This is a symbol inside an MRI common section. The |
| relocation routines are going to handle it specially. |
| Don't change the value. */ |
| resolved = symbol_resolved_p (add_symbol); |
| break; |
| } |
| |
| if (finalize_syms && final_val == 0) |
| { |
| if (LOCAL_SYMBOL_CHECK (add_symbol)) |
| add_symbol = local_symbol_convert ((struct local_symbol *) |
| add_symbol); |
| copy_symbol_attributes (symp, add_symbol); |
| } |
| |
| /* If we have equated this symbol to an undefined or common |
| symbol, keep X_op set to O_symbol, and don't change |
| X_add_number. This permits the routine which writes out |
| relocation to detect this case, and convert the |
| relocation to be against the symbol to which this symbol |
| is equated. */ |
| if (! S_IS_DEFINED (add_symbol) |
| #if defined (OBJ_COFF) && defined (TE_PE) |
| || S_IS_WEAK (add_symbol) |
| #endif |
| || S_IS_COMMON (add_symbol)) |
| { |
| if (finalize_syms) |
| { |
| symp->sy_value.X_op = O_symbol; |
| symp->sy_value.X_add_symbol = add_symbol; |
| symp->sy_value.X_add_number = final_val; |
| /* Use X_op_symbol as a flag. */ |
| symp->sy_value.X_op_symbol = add_symbol; |
| } |
| final_seg = seg_left; |
| final_val = 0; |
| resolved = symbol_resolved_p (add_symbol); |
| symp->sy_flags.sy_resolving = 0; |
| goto exit_dont_set_value; |
| } |
| else if (finalize_syms |
| && ((final_seg == expr_section && seg_left != expr_section) |
| || symbol_shadow_p (symp))) |
| { |
| /* If the symbol is an expression symbol, do similarly |
| as for undefined and common syms above. Handles |
| "sym +/- expr" where "expr" cannot be evaluated |
| immediately, and we want relocations to be against |
| "sym", eg. because it is weak. */ |
| symp->sy_value.X_op = O_symbol; |
| symp->sy_value.X_add_symbol = add_symbol; |
| symp->sy_value.X_add_number = final_val; |
| symp->sy_value.X_op_symbol = add_symbol; |
| final_seg = seg_left; |
| final_val += symp->sy_frag->fr_address + left; |
| resolved = symbol_resolved_p (add_symbol); |
| symp->sy_flags.sy_resolving = 0; |
| goto exit_dont_set_value; |
| } |
| else |
| { |
| final_val += symp->sy_frag->fr_address + left; |
| if (final_seg == expr_section || final_seg == undefined_section) |
| final_seg = seg_left; |
| } |
| |
| resolved = symbol_resolved_p (add_symbol); |
| if (S_IS_WEAKREFR (symp)) |
| { |
| symp->sy_flags.sy_resolving = 0; |
| goto exit_dont_set_value; |
| } |
| break; |
| |
| case O_uminus: |
| case O_bit_not: |
| case O_logical_not: |
| left = resolve_symbol_value (add_symbol); |
| seg_left = S_GET_SEGMENT (add_symbol); |
| |
| /* By reducing these to the relevant dyadic operator, we get |
| !S -> S == 0 permitted on anything, |
| -S -> 0 - S only permitted on absolute |
| ~S -> S ^ ~0 only permitted on absolute */ |
| if (op != O_logical_not && seg_left != absolute_section |
| && finalize_syms) |
| report_op_error (symp, NULL, op, add_symbol); |
| |
| if (final_seg == expr_section || final_seg == undefined_section) |
| final_seg = absolute_section; |
| |
| if (op == O_uminus) |
| left = -left; |
| else if (op == O_logical_not) |
| left = !left; |
| else |
| left = ~left; |
| |
| final_val += left + symp->sy_frag->fr_address; |
| |
| resolved = symbol_resolved_p (add_symbol); |
| break; |
| |
| case O_multiply: |
| case O_divide: |
| case O_modulus: |
| case O_left_shift: |
| case O_right_shift: |
| case O_bit_inclusive_or: |
| case O_bit_or_not: |
| case O_bit_exclusive_or: |
| case O_bit_and: |
| case O_add: |
| case O_subtract: |
| case O_eq: |
| case O_ne: |
| case O_lt: |
| case O_le: |
| case O_ge: |
| case O_gt: |
| case O_logical_and: |
| case O_logical_or: |
| left = resolve_symbol_value (add_symbol); |
| right = resolve_symbol_value (op_symbol); |
| seg_left = S_GET_SEGMENT (add_symbol); |
| seg_right = S_GET_SEGMENT (op_symbol); |
| |
| /* Simplify addition or subtraction of a constant by folding the |
| constant into X_add_number. */ |
| if (op == O_add) |
| { |
| if (seg_right == absolute_section) |
| { |
| final_val += right; |
| goto do_symbol; |
| } |
| else if (seg_left == absolute_section) |
| { |
| final_val += left; |
| add_symbol = op_symbol; |
| left = right; |
| seg_left = seg_right; |
| goto do_symbol; |
| } |
| } |
| else if (op == O_subtract) |
| { |
| if (seg_right == absolute_section) |
| { |
| final_val -= right; |
| goto do_symbol; |
| } |
| } |
| |
| move_seg_ok = 1; |
| /* Equality and non-equality tests are permitted on anything. |
| Subtraction, and other comparison operators are permitted if |
| both operands are in the same section. Otherwise, both |
| operands must be absolute. We already handled the case of |
| addition or subtraction of a constant above. This will |
| probably need to be changed for an object file format which |
| supports arbitrary expressions, such as IEEE-695. */ |
| if (!(seg_left == absolute_section |
| && seg_right == absolute_section) |
| && !(op == O_eq || op == O_ne) |
| && !((op == O_subtract |
| || op == O_lt || op == O_le || op == O_ge || op == O_gt) |
| && seg_left == seg_right |
| && (seg_left != undefined_section |
| || add_symbol == op_symbol))) |
| { |
| /* Don't emit messages unless we're finalizing the symbol value, |
| otherwise we may get the same message multiple times. */ |
| if (finalize_syms) |
| report_op_error (symp, add_symbol, op, op_symbol); |
| /* However do not move the symbol into the absolute section |
| if it cannot currently be resolved - this would confuse |
| other parts of the assembler into believing that the |
| expression had been evaluated to zero. */ |
| else |
| move_seg_ok = 0; |
| } |
| |
| if (move_seg_ok |
| && (final_seg == expr_section || final_seg == undefined_section)) |
| final_seg = absolute_section; |
| |
| /* Check for division by zero. */ |
| if ((op == O_divide || op == O_modulus) && right == 0) |
| { |
| /* If seg_right is not absolute_section, then we've |
| already issued a warning about using a bad symbol. */ |
| if (seg_right == absolute_section && finalize_syms) |
| { |
| const char *file; |
| unsigned int line; |
| |
| if (expr_symbol_where (symp, &file, &line)) |
| as_bad_where (file, line, _("division by zero")); |
| else |
| as_bad (_("division by zero when setting `%s'"), |
| S_GET_NAME (symp)); |
| } |
| |
| right = 1; |
| } |
| |
| switch (symp->sy_value.X_op) |
| { |
| case O_multiply: left *= right; break; |
| case O_divide: left /= right; break; |
| case O_modulus: left %= right; break; |
| case O_left_shift: left <<= right; break; |
| case O_right_shift: left >>= right; break; |
| case O_bit_inclusive_or: left |= right; break; |
| case O_bit_or_not: left |= ~right; break; |
| case O_bit_exclusive_or: left ^= right; break; |
| case O_bit_and: left &= right; break; |
| case O_add: left += right; break; |
| case O_subtract: left -= right; break; |
| case O_eq: |
| case O_ne: |
| left = (left == right && seg_left == seg_right |
| && (seg_left != undefined_section |
| || add_symbol == op_symbol) |
| ? ~ (offsetT) 0 : 0); |
| if (symp->sy_value.X_op == O_ne) |
| left = ~left; |
| break; |
| case O_lt: left = left < right ? ~ (offsetT) 0 : 0; break; |
| case O_le: left = left <= right ? ~ (offsetT) 0 : 0; break; |
| case O_ge: left = left >= right ? ~ (offsetT) 0 : 0; break; |
| case O_gt: left = left > right ? ~ (offsetT) 0 : 0; break; |
| case O_logical_and: left = left && right; break; |
| case O_logical_or: left = left || right; break; |
| default: abort (); |
| } |
| |
| final_val += symp->sy_frag->fr_address + left; |
| if (final_seg == expr_section || final_seg == undefined_section) |
| { |
| if (seg_left == undefined_section |
| || seg_right == undefined_section) |
| final_seg = undefined_section; |
| else if (seg_left == absolute_section) |
| final_seg = seg_right; |
| else |
| final_seg = seg_left; |
| } |
| resolved = (symbol_resolved_p (add_symbol) |
| && symbol_resolved_p (op_symbol)); |
| break; |
| |
| case O_big: |
| case O_illegal: |
| /* Give an error (below) if not in expr_section. We don't |
| want to worry about expr_section symbols, because they |
| are fictional (they are created as part of expression |
| resolution), and any problems may not actually mean |
| anything. */ |
| break; |
| } |
| |
| symp->sy_flags.sy_resolving = 0; |
| } |
| |
| if (finalize_syms) |
| S_SET_VALUE (symp, final_val); |
| |
| exit_dont_set_value: |
| /* Always set the segment, even if not finalizing the value. |
| The segment is used to determine whether a symbol is defined. */ |
| S_SET_SEGMENT (symp, final_seg); |
| |
| /* Don't worry if we can't resolve an expr_section symbol. */ |
| if (finalize_syms) |
| { |
| if (resolved) |
| symp->sy_flags.sy_resolved = 1; |
| else if (S_GET_SEGMENT (symp) != expr_section) |
| { |
| as_bad (_("can't resolve value for symbol `%s'"), |
| S_GET_NAME (symp)); |
| symp->sy_flags.sy_resolved = 1; |
| } |
| } |
| |
| return final_val; |
| } |
| |
| static void resolve_local_symbol (const char *, void *); |
| |
| /* A static function passed to hash_traverse. */ |
| |
| static void |
| resolve_local_symbol (const char *key ATTRIBUTE_UNUSED, void *value) |
| { |
| if (value != NULL) |
| resolve_symbol_value ((symbolS *) value); |
| } |
| |
| /* Resolve all local symbols. */ |
| |
| void |
| resolve_local_symbol_values (void) |
| { |
| hash_traverse (local_hash, resolve_local_symbol); |
| } |
| |
| /* Obtain the current value of a symbol without changing any |
| sub-expressions used. */ |
| |
| int |
| snapshot_symbol (symbolS **symbolPP, valueT *valueP, segT *segP, fragS **fragPP) |
| { |
| symbolS *symbolP = *symbolPP; |
| |
| if (LOCAL_SYMBOL_CHECK (symbolP)) |
| { |
| struct local_symbol *locsym = (struct local_symbol *) symbolP; |
| |
| *valueP = locsym->lsy_value; |
| *segP = locsym->lsy_section; |
| *fragPP = local_symbol_get_frag (locsym); |
| } |
| else |
| { |
| expressionS exp = symbolP->sy_value; |
| |
| if (!symbolP->sy_flags.sy_resolved && exp.X_op != O_illegal) |
| { |
| int resolved; |
| |
| if (symbolP->sy_flags.sy_resolving) |
| return 0; |
| symbolP->sy_flags.sy_resolving = 1; |
| resolved = resolve_expression (&exp); |
| symbolP->sy_flags.sy_resolving = 0; |
| if (!resolved) |
| return 0; |
| |
| switch (exp.X_op) |
| { |
| case O_constant: |
| case O_register: |
| if (!symbol_equated_p (symbolP)) |
| break; |
| /* Fallthru. */ |
| case O_symbol: |
| case O_symbol_rva: |
| symbolP = exp.X_add_symbol; |
| break; |
| default: |
| return 0; |
| } |
| } |
| |
| *symbolPP = symbolP; |
| *valueP = exp.X_add_number; |
| *segP = symbolP->bsym->section; |
| *fragPP = symbolP->sy_frag; |
| |
| if (*segP == expr_section) |
| switch (exp.X_op) |
| { |
| case O_constant: *segP = absolute_section; break; |
| case O_register: *segP = reg_section; break; |
| default: break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Dollar labels look like a number followed by a dollar sign. Eg, "42$". |
| They are *really* local. That is, they go out of scope whenever we see a |
| label that isn't local. Also, like fb labels, there can be multiple |
| instances of a dollar label. Therefor, we name encode each instance with |
| the instance number, keep a list of defined symbols separate from the real |
| symbol table, and we treat these buggers as a sparse array. */ |
| |
| static long *dollar_labels; |
| static long *dollar_label_instances; |
| static char *dollar_label_defines; |
| static unsigned long dollar_label_count; |
| static unsigned long dollar_label_max; |
| |
| int |
| dollar_label_defined (long label) |
| { |
| long *i; |
| |
| know ((dollar_labels != NULL) || (dollar_label_count == 0)); |
| |
| for (i = dollar_labels; i < dollar_labels + dollar_label_count; ++i) |
| if (*i == label) |
| return dollar_label_defines[i - dollar_labels]; |
| |
| /* If we get here, label isn't defined. */ |
| return 0; |
| } |
| |
| static long |
| dollar_label_instance (long label) |
| { |
| long *i; |
| |
| know ((dollar_labels != NULL) || (dollar_label_count == 0)); |
| |
| for (i = dollar_labels; i < dollar_labels + dollar_label_count; ++i) |
| if (*i == label) |
| return (dollar_label_instances[i - dollar_labels]); |
| |
| /* If we get here, we haven't seen the label before. |
| Therefore its instance count is zero. */ |
| return 0; |
| } |
| |
| void |
| dollar_label_clear (void) |
| { |
| memset (dollar_label_defines, '\0', (unsigned int) dollar_label_count); |
| } |
| |
| #define DOLLAR_LABEL_BUMP_BY 10 |
| |
| void |
| define_dollar_label (long label) |
| { |
| long *i; |
| |
| for (i = dollar_labels; i < dollar_labels + dollar_label_count; ++i) |
| if (*i == label) |
| { |
| ++dollar_label_instances[i - dollar_labels]; |
| dollar_label_defines[i - dollar_labels] = 1; |
| return; |
| } |
| |
| /* If we get to here, we don't have label listed yet. */ |
| |
| if (dollar_labels == NULL) |
| { |
| dollar_labels = XNEWVEC (long, DOLLAR_LABEL_BUMP_BY); |
| dollar_label_instances = XNEWVEC (long, DOLLAR_LABEL_BUMP_BY); |
| dollar_label_defines = XNEWVEC (char, DOLLAR_LABEL_BUMP_BY); |
| dollar_label_max = DOLLAR_LABEL_BUMP_BY; |
| dollar_label_count = 0; |
| } |
| else if (dollar_label_count == dollar_label_max) |
| { |
| dollar_label_max += DOLLAR_LABEL_BUMP_BY; |
| dollar_labels = XRESIZEVEC (long, dollar_labels, dollar_label_max); |
| dollar_label_instances = XRESIZEVEC (long, dollar_label_instances, |
| dollar_label_max); |
| dollar_label_defines = XRESIZEVEC (char, dollar_label_defines, |
| dollar_label_max); |
| } /* if we needed to grow */ |
| |
| dollar_labels[dollar_label_count] = label; |
| dollar_label_instances[dollar_label_count] = 1; |
| dollar_label_defines[dollar_label_count] = 1; |
| ++dollar_label_count; |
| } |
| |
| /* Caller must copy returned name: we re-use the area for the next name. |
| |
| The mth occurrence of label n: is turned into the symbol "Ln^Am" |
| where n is the label number and m is the instance number. "L" makes |
| it a label discarded unless debugging and "^A"('\1') ensures no |
| ordinary symbol SHOULD get the same name as a local label |
| symbol. The first "4:" is "L4^A1" - the m numbers begin at 1. |
| |
| fb labels get the same treatment, except that ^B is used in place |
| of ^A. */ |
| |
| char * /* Return local label name. */ |
| dollar_label_name (long n, /* we just saw "n$:" : n a number. */ |
| int augend /* 0 for current instance, 1 for new instance. */) |
| { |
| long i; |
| /* Returned to caller, then copied. Used for created names ("4f"). */ |
| static char symbol_name_build[24]; |
| char *p; |
| char *q; |
| char symbol_name_temporary[20]; /* Build up a number, BACKWARDS. */ |
| |
| know (n >= 0); |
| know (augend == 0 || augend == 1); |
| p = symbol_name_build; |
| #ifdef LOCAL_LABEL_PREFIX |
| *p++ = LOCAL_LABEL_PREFIX; |
| #endif |
| *p++ = 'L'; |
| |
| /* Next code just does sprintf( {}, "%d", n); */ |
| /* Label number. */ |
| q = symbol_name_temporary; |
| for (*q++ = 0, i = n; i; ++q) |
| { |
| *q = i % 10 + '0'; |
| i /= 10; |
| } |
| while ((*p = *--q) != '\0') |
| ++p; |
| |
| *p++ = DOLLAR_LABEL_CHAR; /* ^A */ |
| |
| /* Instance number. */ |
| q = symbol_name_temporary; |
| for (*q++ = 0, i = dollar_label_instance (n) + augend; i; ++q) |
| { |
| *q = i % 10 + '0'; |
| i /= 10; |
| } |
| while ((*p++ = *--q) != '\0'); |
| |
| /* The label, as a '\0' ended string, starts at symbol_name_build. */ |
| return symbol_name_build; |
| } |
| |
| /* Somebody else's idea of local labels. They are made by "n:" where n |
| is any decimal digit. Refer to them with |
| "nb" for previous (backward) n: |
| or "nf" for next (forward) n:. |
| |
| We do a little better and let n be any number, not just a single digit, but |
| since the other guy's assembler only does ten, we treat the first ten |
| specially. |
| |
| Like someone else's assembler, we have one set of local label counters for |
| entire assembly, not one set per (sub)segment like in most assemblers. This |
| implies that one can refer to a label in another segment, and indeed some |
| crufty compilers have done just that. |
| |
| Since there could be a LOT of these things, treat them as a sparse |
| array. */ |
| |
| #define FB_LABEL_SPECIAL (10) |
| |
| static long fb_low_counter[FB_LABEL_SPECIAL]; |
| static long *fb_labels; |
| static long *fb_label_instances; |
| static long fb_label_count; |
| static long fb_label_max; |
| |
| /* This must be more than FB_LABEL_SPECIAL. */ |
| #define FB_LABEL_BUMP_BY (FB_LABEL_SPECIAL + 6) |
| |
| static void |
| fb_label_init (void) |
| { |
| memset ((void *) fb_low_counter, '\0', sizeof (fb_low_counter)); |
| } |
| |
| /* Add one to the instance number of this fb label. */ |
| |
| void |
| fb_label_instance_inc (long label) |
| { |
| long *i; |
| |
| if ((unsigned long) label < FB_LABEL_SPECIAL) |
| { |
| ++fb_low_counter[label]; |
| return; |
| } |
| |
| if (fb_labels != NULL) |
| { |
| for (i = fb_labels + FB_LABEL_SPECIAL; |
| i < fb_labels + fb_label_count; ++i) |
| { |
| if (*i == label) |
| { |
| ++fb_label_instances[i - fb_labels]; |
| return; |
| } /* if we find it */ |
| } /* for each existing label */ |
| } |
| |
| /* If we get to here, we don't have label listed yet. */ |
| |
| if (fb_labels == NULL) |
| { |
| fb_labels = XNEWVEC (long, FB_LABEL_BUMP_BY); |
| fb_label_instances = XNEWVEC (long, FB_LABEL_BUMP_BY); |
| fb_label_max = FB_LABEL_BUMP_BY; |
| fb_label_count = FB_LABEL_SPECIAL; |
| |
| } |
| else if (fb_label_count == fb_label_max) |
| { |
| fb_label_max += FB_LABEL_BUMP_BY; |
| fb_labels = XRESIZEVEC (long, fb_labels, fb_label_max); |
| fb_label_instances = XRESIZEVEC (long, fb_label_instances, fb_label_max); |
| } /* if we needed to grow */ |
| |
| fb_labels[fb_label_count] = label; |
| fb_label_instances[fb_label_count] = 1; |
| ++fb_label_count; |
| } |
| |
| static long |
| fb_label_instance (long label) |
| { |
| long *i; |
| |
| if ((unsigned long) label < FB_LABEL_SPECIAL) |
| { |
| return (fb_low_counter[label]); |
| } |
| |
| if (fb_labels != NULL) |
| { |
| for (i = fb_labels + FB_LABEL_SPECIAL; |
| i < fb_labels + fb_label_count; ++i) |
| { |
| if (*i == label) |
| { |
| return (fb_label_instances[i - fb_labels]); |
| } /* if we find it */ |
| } /* for each existing label */ |
| } |
| |
| /* We didn't find the label, so this must be a reference to the |
| first instance. */ |
| return 0; |
| } |
| |
| /* Caller must copy returned name: we re-use the area for the next name. |
| |
| The mth occurrence of label n: is turned into the symbol "Ln^Bm" |
| where n is the label number and m is the instance number. "L" makes |
| it a label discarded unless debugging and "^B"('\2') ensures no |
| ordinary symbol SHOULD get the same name as a local label |
| symbol. The first "4:" is "L4^B1" - the m numbers begin at 1. |
| |
| dollar labels get the same treatment, except that ^A is used in |
| place of ^B. */ |
| |
| char * /* Return local label name. */ |
| fb_label_name (long n, /* We just saw "n:", "nf" or "nb" : n a number. */ |
| long augend /* 0 for nb, 1 for n:, nf. */) |
| { |
| long i; |
| /* Returned to caller, then copied. Used for created names ("4f"). */ |
| static char symbol_name_build[24]; |
| char *p; |
| char *q; |
| char symbol_name_temporary[20]; /* Build up a number, BACKWARDS. */ |
| |
| know (n >= 0); |
| #ifdef TC_MMIX |
| know ((unsigned long) augend <= 2 /* See mmix_fb_label. */); |
| #else |
| know ((unsigned long) augend <= 1); |
| #endif |
| p = symbol_name_build; |
| #ifdef LOCAL_LABEL_PREFIX |
| *p++ = LOCAL_LABEL_PREFIX; |
| #endif |
| *p++ = 'L'; |
| |
| /* Next code just does sprintf( {}, "%d", n); */ |
| /* Label number. */ |
| q = symbol_name_temporary; |
| for (*q++ = 0, i = n; i; ++q) |
| { |
| *q = i % 10 + '0'; |
| i /= 10; |
| } |
| while ((*p = *--q) != '\0') |
| ++p; |
| |
| *p++ = LOCAL_LABEL_CHAR; /* ^B */ |
| |
| /* Instance number. */ |
| q = symbol_name_temporary; |
| for (*q++ = 0, i = fb_label_instance (n) + augend; i; ++q) |
| { |
| *q = i % 10 + '0'; |
| i /= 10; |
| } |
| while ((*p++ = *--q) != '\0'); |
| |
| /* The label, as a '\0' ended string, starts at symbol_name_build. */ |
| return (symbol_name_build); |
| } |
| |
| /* Decode name that may have been generated by foo_label_name() above. |
| If the name wasn't generated by foo_label_name(), then return it |
| unaltered. This is used for error messages. */ |
| |
| char * |
| decode_local_label_name (char *s) |
| { |
| char *p; |
| char *symbol_decode; |
| int label_number; |
| int instance_number; |
| const char *type; |
| const char *message_format; |
| int lindex = 0; |
| |
| #ifdef LOCAL_LABEL_PREFIX |
| if (s[lindex] == LOCAL_LABEL_PREFIX) |
| ++lindex; |
| #endif |
| |
| if (s[lindex] != 'L') |
| return s; |
| |
| for (label_number = 0, p = s + lindex + 1; ISDIGIT (*p); ++p) |
| label_number = (10 * label_number) + *p - '0'; |
| |
| if (*p == DOLLAR_LABEL_CHAR) |
| type = "dollar"; |
| else if (*p == LOCAL_LABEL_CHAR) |
| type = "fb"; |
| else |
| return s; |
| |
| for (instance_number = 0, p++; ISDIGIT (*p); ++p) |
| instance_number = (10 * instance_number) + *p - '0'; |
| |
| message_format = _("\"%d\" (instance number %d of a %s label)"); |
| symbol_decode = (char *) obstack_alloc (¬es, strlen (message_format) + 30); |
| sprintf (symbol_decode, message_format, label_number, instance_number, type); |
| |
| return symbol_decode; |
| } |
| |
| /* Get the value of a symbol. */ |
| |
| valueT |
| S_GET_VALUE (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return resolve_symbol_value (s); |
| |
| if (!s->sy_flags.sy_resolved) |
| { |
| valueT val = resolve_symbol_value (s); |
| if (!finalize_syms) |
| return val; |
| } |
| if (S_IS_WEAKREFR (s)) |
| return S_GET_VALUE (s->sy_value.X_add_symbol); |
| |
| if (s->sy_value.X_op != O_constant) |
| { |
| if (! s->sy_flags.sy_resolved |
| || s->sy_value.X_op != O_symbol |
| || (S_IS_DEFINED (s) && ! S_IS_COMMON (s))) |
| as_bad (_("attempt to get value of unresolved symbol `%s'"), |
| S_GET_NAME (s)); |
| } |
| return (valueT) s->sy_value.X_add_number; |
| } |
| |
| /* Set the value of a symbol. */ |
| |
| void |
| S_SET_VALUE (symbolS *s, valueT val) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| { |
| ((struct local_symbol *) s)->lsy_value = val; |
| return; |
| } |
| |
| s->sy_value.X_op = O_constant; |
| s->sy_value.X_add_number = (offsetT) val; |
| s->sy_value.X_unsigned = 0; |
| S_CLEAR_WEAKREFR (s); |
| } |
| |
| void |
| copy_symbol_attributes (symbolS *dest, symbolS *src) |
| { |
| if (LOCAL_SYMBOL_CHECK (dest)) |
| dest = local_symbol_convert ((struct local_symbol *) dest); |
| if (LOCAL_SYMBOL_CHECK (src)) |
| src = local_symbol_convert ((struct local_symbol *) src); |
| |
| /* In an expression, transfer the settings of these flags. |
| The user can override later, of course. */ |
| #define COPIED_SYMFLAGS (BSF_FUNCTION | BSF_OBJECT \ |
| | BSF_GNU_INDIRECT_FUNCTION) |
| dest->bsym->flags |= src->bsym->flags & COPIED_SYMFLAGS; |
| |
| #ifdef OBJ_COPY_SYMBOL_ATTRIBUTES |
| OBJ_COPY_SYMBOL_ATTRIBUTES (dest, src); |
| #endif |
| |
| #ifdef TC_COPY_SYMBOL_ATTRIBUTES |
| TC_COPY_SYMBOL_ATTRIBUTES (dest, src); |
| #endif |
| } |
| |
| int |
| S_IS_FUNCTION (symbolS *s) |
| { |
| flagword flags; |
| |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| |
| flags = s->bsym->flags; |
| |
| return (flags & BSF_FUNCTION) != 0; |
| } |
| |
| int |
| S_IS_EXTERNAL (symbolS *s) |
| { |
| flagword flags; |
| |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| |
| flags = s->bsym->flags; |
| |
| /* Sanity check. */ |
| if ((flags & BSF_LOCAL) && (flags & BSF_GLOBAL)) |
| abort (); |
| |
| return (flags & BSF_GLOBAL) != 0; |
| } |
| |
| int |
| S_IS_WEAK (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| /* Conceptually, a weakrefr is weak if the referenced symbol is. We |
| could probably handle a WEAKREFR as always weak though. E.g., if |
| the referenced symbol has lost its weak status, there's no reason |
| to keep handling the weakrefr as if it was weak. */ |
| if (S_IS_WEAKREFR (s)) |
| return S_IS_WEAK (s->sy_value.X_add_symbol); |
| return (s->bsym->flags & BSF_WEAK) != 0; |
| } |
| |
| int |
| S_IS_WEAKREFR (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_weakrefr != 0; |
| } |
| |
| int |
| S_IS_WEAKREFD (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_weakrefd != 0; |
| } |
| |
| int |
| S_IS_COMMON (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return bfd_is_com_section (s->bsym->section); |
| } |
| |
| int |
| S_IS_DEFINED (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return ((struct local_symbol *) s)->lsy_section != undefined_section; |
| return s->bsym->section != undefined_section; |
| } |
| |
| |
| #ifndef EXTERN_FORCE_RELOC |
| #define EXTERN_FORCE_RELOC IS_ELF |
| #endif |
| |
| /* Return true for symbols that should not be reduced to section |
| symbols or eliminated from expressions, because they may be |
| overridden by the linker. */ |
| int |
| S_FORCE_RELOC (symbolS *s, int strict) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return ((struct local_symbol *) s)->lsy_section == undefined_section; |
| |
| return ((strict |
| && ((s->bsym->flags & BSF_WEAK) != 0 |
| || (EXTERN_FORCE_RELOC |
| && (s->bsym->flags & BSF_GLOBAL) != 0))) |
| || (s->bsym->flags & BSF_GNU_INDIRECT_FUNCTION) != 0 |
| || s->bsym->section == undefined_section |
| || bfd_is_com_section (s->bsym->section)); |
| } |
| |
| int |
| S_IS_DEBUG (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| if (s->bsym->flags & BSF_DEBUGGING) |
| return 1; |
| return 0; |
| } |
| |
| int |
| S_IS_LOCAL (symbolS *s) |
| { |
| flagword flags; |
| const char *name; |
| |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 1; |
| |
| flags = s->bsym->flags; |
| |
| /* Sanity check. */ |
| if ((flags & BSF_LOCAL) && (flags & BSF_GLOBAL)) |
| abort (); |
| |
| if (bfd_get_section (s->bsym) == reg_section) |
| return 1; |
| |
| if (flag_strip_local_absolute |
| /* Keep BSF_FILE symbols in order to allow debuggers to identify |
| the source file even when the object file is stripped. */ |
| && (flags & (BSF_GLOBAL | BSF_FILE)) == 0 |
| && bfd_get_section (s->bsym) == absolute_section) |
| return 1; |
| |
| name = S_GET_NAME (s); |
| return (name != NULL |
| && ! S_IS_DEBUG (s) |
| && (strchr (name, DOLLAR_LABEL_CHAR) |
| || strchr (name, LOCAL_LABEL_CHAR) |
| || TC_LABEL_IS_LOCAL (name) |
| || (! flag_keep_locals |
| && (bfd_is_local_label (stdoutput, s->bsym) |
| || (flag_mri |
| && name[0] == '?' |
| && name[1] == '?'))))); |
| } |
| |
| int |
| S_IS_STABD (symbolS *s) |
| { |
| return S_GET_NAME (s) == 0; |
| } |
| |
| int |
| S_CAN_BE_REDEFINED (const symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return (local_symbol_get_frag ((struct local_symbol *) s) |
| == &predefined_address_frag); |
| /* Permit register names to be redefined. */ |
| return s->bsym->section == reg_section; |
| } |
| |
| int |
| S_IS_VOLATILE (const symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_volatile; |
| } |
| |
| int |
| S_IS_FORWARD_REF (const symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_forward_ref; |
| } |
| |
| const char * |
| S_GET_NAME (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return ((struct local_symbol *) s)->lsy_name; |
| return s->bsym->name; |
| } |
| |
| segT |
| S_GET_SEGMENT (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return ((struct local_symbol *) s)->lsy_section; |
| return s->bsym->section; |
| } |
| |
| void |
| S_SET_SEGMENT (symbolS *s, segT seg) |
| { |
| /* Don't reassign section symbols. The direct reason is to prevent seg |
| faults assigning back to const global symbols such as *ABS*, but it |
| shouldn't happen anyway. */ |
| |
| if (LOCAL_SYMBOL_CHECK (s)) |
| { |
| if (seg == reg_section) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| else |
| { |
| ((struct local_symbol *) s)->lsy_section = seg; |
| return; |
| } |
| } |
| |
| if (s->bsym->flags & BSF_SECTION_SYM) |
| { |
| if (s->bsym->section != seg) |
| abort (); |
| } |
| else |
| s->bsym->section = seg; |
| } |
| |
| void |
| S_SET_EXTERNAL (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| if ((s->bsym->flags & BSF_WEAK) != 0) |
| { |
| /* Let .weak override .global. */ |
| return; |
| } |
| if (s->bsym->flags & BSF_SECTION_SYM) |
| { |
| /* Do not reassign section symbols. */ |
| as_warn (_("section symbols are already global")); |
| return; |
| } |
| #ifndef TC_GLOBAL_REGISTER_SYMBOL_OK |
| if (S_GET_SEGMENT (s) == reg_section) |
| { |
| as_bad ("can't make register symbol `%s' global", |
| S_GET_NAME (s)); |
| return; |
| } |
| #endif |
| s->bsym->flags |= BSF_GLOBAL; |
| s->bsym->flags &= ~(BSF_LOCAL | BSF_WEAK); |
| |
| #ifdef TE_PE |
| if (! an_external_name && S_GET_NAME(s)[0] != '.') |
| an_external_name = S_GET_NAME (s); |
| #endif |
| } |
| |
| void |
| S_CLEAR_EXTERNAL (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| if ((s->bsym->flags & BSF_WEAK) != 0) |
| { |
| /* Let .weak override. */ |
| return; |
| } |
| s->bsym->flags |= BSF_LOCAL; |
| s->bsym->flags &= ~(BSF_GLOBAL | BSF_WEAK); |
| } |
| |
| void |
| S_SET_WEAK (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| #ifdef obj_set_weak_hook |
| obj_set_weak_hook (s); |
| #endif |
| s->bsym->flags |= BSF_WEAK; |
| s->bsym->flags &= ~(BSF_GLOBAL | BSF_LOCAL); |
| } |
| |
| void |
| S_SET_WEAKREFR (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_weakrefr = 1; |
| /* If the alias was already used, make sure we mark the target as |
| used as well, otherwise it might be dropped from the symbol |
| table. This may have unintended side effects if the alias is |
| later redirected to another symbol, such as keeping the unused |
| previous target in the symbol table. Since it will be weak, it's |
| not a big deal. */ |
| if (s->sy_flags.sy_used) |
| symbol_mark_used (s->sy_value.X_add_symbol); |
| } |
| |
| void |
| S_CLEAR_WEAKREFR (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| s->sy_flags.sy_weakrefr = 0; |
| } |
| |
| void |
| S_SET_WEAKREFD (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_weakrefd = 1; |
| S_SET_WEAK (s); |
| } |
| |
| void |
| S_CLEAR_WEAKREFD (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| if (s->sy_flags.sy_weakrefd) |
| { |
| s->sy_flags.sy_weakrefd = 0; |
| /* If a weakref target symbol is weak, then it was never |
| referenced directly before, not even in a .global directive, |
| so decay it to local. If it remains undefined, it will be |
| later turned into a global, like any other undefined |
| symbol. */ |
| if (s->bsym->flags & BSF_WEAK) |
| { |
| #ifdef obj_clear_weak_hook |
| obj_clear_weak_hook (s); |
| #endif |
| s->bsym->flags &= ~BSF_WEAK; |
| s->bsym->flags |= BSF_LOCAL; |
| } |
| } |
| } |
| |
| void |
| S_SET_THREAD_LOCAL (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| if (bfd_is_com_section (s->bsym->section) |
| && (s->bsym->flags & BSF_THREAD_LOCAL) != 0) |
| return; |
| s->bsym->flags |= BSF_THREAD_LOCAL; |
| if ((s->bsym->flags & BSF_FUNCTION) != 0) |
| as_bad (_("Accessing function `%s' as thread-local object"), |
| S_GET_NAME (s)); |
| else if (! bfd_is_und_section (s->bsym->section) |
| && (s->bsym->section->flags & SEC_THREAD_LOCAL) == 0) |
| as_bad (_("Accessing `%s' as thread-local object"), |
| S_GET_NAME (s)); |
| } |
| |
| void |
| S_SET_NAME (symbolS *s, const char *name) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| { |
| ((struct local_symbol *) s)->lsy_name = name; |
| return; |
| } |
| s->bsym->name = name; |
| } |
| |
| void |
| S_SET_VOLATILE (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_volatile = 1; |
| } |
| |
| void |
| S_CLEAR_VOLATILE (symbolS *s) |
| { |
| if (!LOCAL_SYMBOL_CHECK (s)) |
| s->sy_flags.sy_volatile = 0; |
| } |
| |
| void |
| S_SET_FORWARD_REF (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_forward_ref = 1; |
| } |
| |
| /* Return the previous symbol in a chain. */ |
| |
| symbolS * |
| symbol_previous (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| abort (); |
| return s->sy_previous; |
| } |
| |
| /* Return the next symbol in a chain. */ |
| |
| symbolS * |
| symbol_next (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| abort (); |
| return s->sy_next; |
| } |
| |
| /* Return a pointer to the value of a symbol as an expression. */ |
| |
| expressionS * |
| symbol_get_value_expression (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| return &s->sy_value; |
| } |
| |
| /* Set the value of a symbol to an expression. */ |
| |
| void |
| symbol_set_value_expression (symbolS *s, const expressionS *exp) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_value = *exp; |
| S_CLEAR_WEAKREFR (s); |
| } |
| |
| /* Return whether 2 symbols are the same. */ |
| |
| int |
| symbol_same_p (symbolS *s1, symbolS *s2) |
| { |
| if (s1->sy_flags.sy_local_symbol |
| && local_symbol_converted_p ((struct local_symbol *) s1)) |
| s1 = local_symbol_get_real_symbol ((struct local_symbol *) s1); |
| if (s2->sy_flags.sy_local_symbol |
| && local_symbol_converted_p ((struct local_symbol *) s2)) |
| s2 = local_symbol_get_real_symbol ((struct local_symbol *) s2); |
| return s1 == s2; |
| } |
| |
| /* Return a pointer to the X_add_number component of a symbol. */ |
| |
| offsetT * |
| symbol_X_add_number (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return (offsetT *) &((struct local_symbol *) s)->lsy_value; |
| |
| return &s->sy_value.X_add_number; |
| } |
| |
| /* Set the value of SYM to the current position in the current segment. */ |
| |
| void |
| symbol_set_value_now (symbolS *sym) |
| { |
| S_SET_SEGMENT (sym, now_seg); |
| S_SET_VALUE (sym, frag_now_fix ()); |
| symbol_set_frag (sym, frag_now); |
| } |
| |
| /* Set the frag of a symbol. */ |
| |
| void |
| symbol_set_frag (symbolS *s, fragS *f) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| { |
| local_symbol_set_frag ((struct local_symbol *) s, f); |
| return; |
| } |
| s->sy_frag = f; |
| S_CLEAR_WEAKREFR (s); |
| } |
| |
| /* Return the frag of a symbol. */ |
| |
| fragS * |
| symbol_get_frag (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return local_symbol_get_frag ((struct local_symbol *) s); |
| return s->sy_frag; |
| } |
| |
| /* Mark a symbol as having been used. */ |
| |
| void |
| symbol_mark_used (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| s->sy_flags.sy_used = 1; |
| if (S_IS_WEAKREFR (s)) |
| symbol_mark_used (s->sy_value.X_add_symbol); |
| } |
| |
| /* Clear the mark of whether a symbol has been used. */ |
| |
| void |
| symbol_clear_used (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_used = 0; |
| } |
| |
| /* Return whether a symbol has been used. */ |
| |
| int |
| symbol_used_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 1; |
| return s->sy_flags.sy_used; |
| } |
| |
| /* Mark a symbol as having been used in a reloc. */ |
| |
| void |
| symbol_mark_used_in_reloc (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_used_in_reloc = 1; |
| } |
| |
| /* Clear the mark of whether a symbol has been used in a reloc. */ |
| |
| void |
| symbol_clear_used_in_reloc (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| s->sy_flags.sy_used_in_reloc = 0; |
| } |
| |
| /* Return whether a symbol has been used in a reloc. */ |
| |
| int |
| symbol_used_in_reloc_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_used_in_reloc; |
| } |
| |
| /* Mark a symbol as an MRI common symbol. */ |
| |
| void |
| symbol_mark_mri_common (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_flags.sy_mri_common = 1; |
| } |
| |
| /* Clear the mark of whether a symbol is an MRI common symbol. */ |
| |
| void |
| symbol_clear_mri_common (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| s->sy_flags.sy_mri_common = 0; |
| } |
| |
| /* Return whether a symbol is an MRI common symbol. */ |
| |
| int |
| symbol_mri_common_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_mri_common; |
| } |
| |
| /* Mark a symbol as having been written. */ |
| |
| void |
| symbol_mark_written (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| s->sy_flags.sy_written = 1; |
| } |
| |
| /* Clear the mark of whether a symbol has been written. */ |
| |
| void |
| symbol_clear_written (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return; |
| s->sy_flags.sy_written = 0; |
| } |
| |
| /* Return whether a symbol has been written. */ |
| |
| int |
| symbol_written_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_flags.sy_written; |
| } |
| |
| /* Mark a symbol has having been resolved. */ |
| |
| void |
| symbol_mark_resolved (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| { |
| local_symbol_mark_resolved ((struct local_symbol *) s); |
| return; |
| } |
| s->sy_flags.sy_resolved = 1; |
| } |
| |
| /* Return whether a symbol has been resolved. */ |
| |
| int |
| symbol_resolved_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return local_symbol_resolved_p ((struct local_symbol *) s); |
| return s->sy_flags.sy_resolved; |
| } |
| |
| /* Return whether a symbol is a section symbol. */ |
| |
| int |
| symbol_section_p (symbolS *s ATTRIBUTE_UNUSED) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return (s->bsym->flags & BSF_SECTION_SYM) != 0; |
| } |
| |
| /* Return whether a symbol is equated to another symbol. */ |
| |
| int |
| symbol_equated_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_value.X_op == O_symbol; |
| } |
| |
| /* Return whether a symbol is equated to another symbol, and should be |
| treated specially when writing out relocs. */ |
| |
| int |
| symbol_equated_reloc_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| /* X_op_symbol, normally not used for O_symbol, is set by |
| resolve_symbol_value to flag expression syms that have been |
| equated. */ |
| return (s->sy_value.X_op == O_symbol |
| #if defined (OBJ_COFF) && defined (TE_PE) |
| && ! S_IS_WEAK (s) |
| #endif |
| && ((s->sy_flags.sy_resolved && s->sy_value.X_op_symbol != NULL) |
| || ! S_IS_DEFINED (s) |
| || S_IS_COMMON (s))); |
| } |
| |
| /* Return whether a symbol has a constant value. */ |
| |
| int |
| symbol_constant_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 1; |
| return s->sy_value.X_op == O_constant; |
| } |
| |
| /* Return whether a symbol was cloned and thus removed from the global |
| symbol list. */ |
| |
| int |
| symbol_shadow_p (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| return 0; |
| return s->sy_next == s; |
| } |
| |
| /* Return the BFD symbol for a symbol. */ |
| |
| asymbol * |
| symbol_get_bfdsym (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| return s->bsym; |
| } |
| |
| /* Set the BFD symbol for a symbol. */ |
| |
| void |
| symbol_set_bfdsym (symbolS *s, asymbol *bsym) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| /* Usually, it is harmless to reset a symbol to a BFD section |
| symbol. For example, obj_elf_change_section sets the BFD symbol |
| of an old symbol with the newly created section symbol. But when |
| we have multiple sections with the same name, the newly created |
| section may have the same name as an old section. We check if the |
| old symbol has been already marked as a section symbol before |
| resetting it. */ |
| if ((s->bsym->flags & BSF_SECTION_SYM) == 0) |
| s->bsym = bsym; |
| /* else XXX - What do we do now ? */ |
| } |
| |
| #ifdef OBJ_SYMFIELD_TYPE |
| |
| /* Get a pointer to the object format information for a symbol. */ |
| |
| OBJ_SYMFIELD_TYPE * |
| symbol_get_obj (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| return &s->sy_obj; |
| } |
| |
| /* Set the object format information for a symbol. */ |
| |
| void |
| symbol_set_obj (symbolS *s, OBJ_SYMFIELD_TYPE *o) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_obj = *o; |
| } |
| |
| #endif /* OBJ_SYMFIELD_TYPE */ |
| |
| #ifdef TC_SYMFIELD_TYPE |
| |
| /* Get a pointer to the processor information for a symbol. */ |
| |
| TC_SYMFIELD_TYPE * |
| symbol_get_tc (symbolS *s) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| return &s->sy_tc; |
| } |
| |
| /* Set the processor information for a symbol. */ |
| |
| void |
| symbol_set_tc (symbolS *s, TC_SYMFIELD_TYPE *o) |
| { |
| if (LOCAL_SYMBOL_CHECK (s)) |
| s = local_symbol_convert ((struct local_symbol *) s); |
| s->sy_tc = *o; |
| } |
| |
| #endif /* TC_SYMFIELD_TYPE */ |
| |
| void |
| symbol_begin (void) |
| { |
| symbol_lastP = NULL; |
| symbol_rootP = NULL; /* In case we have 0 symbols (!!) */ |
| sy_hash = hash_new (); |
| local_hash = hash_new (); |
| |
| memset ((char *) (&abs_symbol), '\0', sizeof (abs_symbol)); |
| #if defined (EMIT_SECTION_SYMBOLS) || !defined (RELOC_REQUIRES_SYMBOL) |
| abs_symbol.bsym = bfd_abs_section_ptr->symbol; |
| #endif |
| abs_symbol.sy_value.X_op = O_constant; |
| abs_symbol.sy_frag = &zero_address_frag; |
| |
| if (LOCAL_LABELS_FB) |
| fb_label_init (); |
| } |
| |
| void |
| dot_symbol_init (void) |
| { |
| dot_symbol.bsym = bfd_make_empty_symbol (stdoutput); |
| if (dot_symbol.bsym == NULL) |
| as_fatal ("bfd_make_empty_symbol: %s", bfd_errmsg (bfd_get_error ())); |
| dot_symbol.bsym->name = "."; |
| dot_symbol.sy_flags.sy_forward_ref = 1; |
| dot_symbol.sy_value.X_op = O_constant; |
| } |
| |
| int indent_level; |
| |
| /* Maximum indent level. |
| Available for modification inside a gdb session. */ |
| static int max_indent_level = 8; |
| |
| void |
| print_symbol_value_1 (FILE *file, symbolS *sym) |
| { |
| const char *name = S_GET_NAME (sym); |
| if (!name || !name[0]) |
| name = "(unnamed)"; |
| fprintf (file, "sym "); |
| fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) sym)); |
| fprintf (file, " %s", name); |
| |
| if (LOCAL_SYMBOL_CHECK (sym)) |
| { |
| struct local_symbol *locsym = (struct local_symbol *) sym; |
| |
| if (local_symbol_get_frag (locsym) != & zero_address_frag |
| && local_symbol_get_frag (locsym) != NULL) |
| { |
| fprintf (file, " frag "); |
| fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) local_symbol_get_frag (locsym))); |
| } |
| if (local_symbol_resolved_p (locsym)) |
| fprintf (file, " resolved"); |
| fprintf (file, " local"); |
| } |
| else |
| { |
| if (sym->sy_frag != &zero_address_frag) |
| { |
| fprintf (file, " frag "); |
| fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) sym->sy_frag)); |
| } |
| if (sym->sy_flags.sy_written) |
| fprintf (file, " written"); |
| if (sym->sy_flags.sy_resolved) |
| fprintf (file, " resolved"); |
| else if (sym->sy_flags.sy_resolving) |
| fprintf (file, " resolving"); |
| if (sym->sy_flags.sy_used_in_reloc) |
| fprintf (file, " used-in-reloc"); |
| if (sym->sy_flags.sy_used) |
| fprintf (file, " used"); |
| if (S_IS_LOCAL (sym)) |
| fprintf (file, " local"); |
| if (S_IS_EXTERNAL (sym)) |
| fprintf (file, " extern"); |
| if (S_IS_WEAK (sym)) |
| fprintf (file, " weak"); |
| if (S_IS_DEBUG (sym)) |
| fprintf (file, " debug"); |
| if (S_IS_DEFINED (sym)) |
| fprintf (file, " defined"); |
| } |
| if (S_IS_WEAKREFR (sym)) |
| fprintf (file, " weakrefr"); |
| if (S_IS_WEAKREFD (sym)) |
| fprintf (file, " weakrefd"); |
| fprintf (file, " %s", segment_name (S_GET_SEGMENT (sym))); |
| if (symbol_resolved_p (sym)) |
| { |
| segT s = S_GET_SEGMENT (sym); |
| |
| if (s != undefined_section |
| && s != expr_section) |
| fprintf (file, " %lx", (unsigned long) S_GET_VALUE (sym)); |
| } |
| else if (indent_level < max_indent_level |
| && S_GET_SEGMENT (sym) != undefined_section) |
| { |
| indent_level++; |
| fprintf (file, "\n%*s<", indent_level * 4, ""); |
| if (LOCAL_SYMBOL_CHECK (sym)) |
| fprintf (file, "constant %lx", |
| (unsigned long) ((struct local_symbol *) sym)->lsy_value); |
| else |
| print_expr_1 (file, &sym->sy_value); |
| fprintf (file, ">"); |
| indent_level--; |
| } |
| fflush (file); |
| } |
| |
| void |
| print_symbol_value (symbolS *sym) |
| { |
| indent_level = 0; |
| print_symbol_value_1 (stderr, sym); |
| fprintf (stderr, "\n"); |
| } |
| |
| static void |
| print_binary (FILE *file, const char *name, expressionS *exp) |
| { |
| indent_level++; |
| fprintf (file, "%s\n%*s<", name, indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_add_symbol); |
| fprintf (file, ">\n%*s<", indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_op_symbol); |
| fprintf (file, ">"); |
| indent_level--; |
| } |
| |
| void |
| print_expr_1 (FILE *file, expressionS *exp) |
| { |
| fprintf (file, "expr "); |
| fprintf_vma (file, (bfd_vma) ((bfd_hostptr_t) exp)); |
| fprintf (file, " "); |
| switch (exp->X_op) |
| { |
| case O_illegal: |
| fprintf (file, "illegal"); |
| break; |
| case O_absent: |
| fprintf (file, "absent"); |
| break; |
| case O_constant: |
| fprintf (file, "constant %lx", (unsigned long) exp->X_add_number); |
| break; |
| case O_symbol: |
| indent_level++; |
| fprintf (file, "symbol\n%*s<", indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_add_symbol); |
| fprintf (file, ">"); |
| maybe_print_addnum: |
| if (exp->X_add_number) |
| fprintf (file, "\n%*s%lx", indent_level * 4, "", |
| (unsigned long) exp->X_add_number); |
| indent_level--; |
| break; |
| case O_register: |
| fprintf (file, "register #%d", (int) exp->X_add_number); |
| break; |
| case O_big: |
| fprintf (file, "big"); |
| break; |
| case O_uminus: |
| fprintf (file, "uminus -<"); |
| indent_level++; |
| print_symbol_value_1 (file, exp->X_add_symbol); |
| fprintf (file, ">"); |
| goto maybe_print_addnum; |
| case O_bit_not: |
| fprintf (file, "bit_not"); |
| break; |
| case O_multiply: |
| print_binary (file, "multiply", exp); |
| break; |
| case O_divide: |
| print_binary (file, "divide", exp); |
| break; |
| case O_modulus: |
| print_binary (file, "modulus", exp); |
| break; |
| case O_left_shift: |
| print_binary (file, "lshift", exp); |
| break; |
| case O_right_shift: |
| print_binary (file, "rshift", exp); |
| break; |
| case O_bit_inclusive_or: |
| print_binary (file, "bit_ior", exp); |
| break; |
| case O_bit_exclusive_or: |
| print_binary (file, "bit_xor", exp); |
| break; |
| case O_bit_and: |
| print_binary (file, "bit_and", exp); |
| break; |
| case O_eq: |
| print_binary (file, "eq", exp); |
| break; |
| case O_ne: |
| print_binary (file, "ne", exp); |
| break; |
| case O_lt: |
| print_binary (file, "lt", exp); |
| break; |
| case O_le: |
| print_binary (file, "le", exp); |
| break; |
| case O_ge: |
| print_binary (file, "ge", exp); |
| break; |
| case O_gt: |
| print_binary (file, "gt", exp); |
| break; |
| case O_logical_and: |
| print_binary (file, "logical_and", exp); |
| break; |
| case O_logical_or: |
| print_binary (file, "logical_or", exp); |
| break; |
| case O_add: |
| indent_level++; |
| fprintf (file, "add\n%*s<", indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_add_symbol); |
| fprintf (file, ">\n%*s<", indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_op_symbol); |
| fprintf (file, ">"); |
| goto maybe_print_addnum; |
| case O_subtract: |
| indent_level++; |
| fprintf (file, "subtract\n%*s<", indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_add_symbol); |
| fprintf (file, ">\n%*s<", indent_level * 4, ""); |
| print_symbol_value_1 (file, exp->X_op_symbol); |
| fprintf (file, ">"); |
| goto maybe_print_addnum; |
| default: |
| fprintf (file, "{unknown opcode %d}", (int) exp->X_op); |
| break; |
| } |
| fflush (stdout); |
| } |
| |
| void |
| print_expr (expressionS *exp) |
| { |
| print_expr_1 (stderr, exp); |
| fprintf (stderr, "\n"); |
| } |
| |
| void |
| symbol_print_statistics (FILE *file) |
| { |
| hash_print_statistics (file, "symbol table", sy_hash); |
| hash_print_statistics (file, "mini local symbol table", local_hash); |
| fprintf (file, "%lu mini local symbols created, %lu converted\n", |
| local_symbol_count, local_symbol_conversion_count); |
| } |
| |
| #ifdef OBJ_COMPLEX_RELC |
| |
| /* Convert given symbol to a new complex-relocation symbol name. This |
| may be a recursive function, since it might be called for non-leaf |
| nodes (plain symbols) in the expression tree. The caller owns the |
| returning string, so should free it eventually. Errors are |
| indicated via as_bad and a NULL return value. The given symbol |
| is marked with sy_used_in_reloc. */ |
| |
| char * |
| symbol_relc_make_sym (symbolS * sym) |
| { |
| char * terminal = NULL; |
| const char * sname; |
| char typetag; |
| int sname_len; |
| |
| gas_assert (sym != NULL); |
| |
| /* Recurse to symbol_relc_make_expr if this symbol |
| is defined as an expression or a plain value. */ |
| if ( S_GET_SEGMENT (sym) == expr_section |
| || S_GET_SEGMENT (sym) == absolute_section) |
| return symbol_relc_make_expr (& sym->sy_value); |
| |
| /* This may be a "fake symbol" L0\001, referring to ".". |
| Write out a special null symbol to refer to this position. */ |
| if (! strcmp (S_GET_NAME (sym), FAKE_LABEL_NAME)) |
| return xstrdup ("."); |
| |
| /* We hope this is a plain leaf symbol. Construct the encoding |
| as {S,s}II...:CCCCCCC.... |
| where 'S'/'s' means section symbol / plain symbol |
| III is decimal for the symbol name length |
| CCC is the symbol name itself. */ |
| symbol_mark_used_in_reloc (sym); |
| |
| sname = S_GET_NAME (sym); |
| sname_len = strlen (sname); |
| typetag = symbol_section_p (sym) ? 'S' : 's'; |
| |
| terminal = XNEWVEC (char, (1 /* S or s */ |
| + 8 /* sname_len in decimal */ |
| + 1 /* _ spacer */ |
| + sname_len /* name itself */ |
| + 1 /* \0 */ )); |
| |
| sprintf (terminal, "%c%d:%s", typetag, sname_len, sname); |
| return terminal; |
| } |
| |
| /* Convert given value to a new complex-relocation symbol name. This |
| is a non-recursive function, since it is be called for leaf nodes |
| (plain values) in the expression tree. The caller owns the |
| returning string, so should free() it eventually. No errors. */ |
| |
| char * |
| symbol_relc_make_value (offsetT val) |
| { |
| char * terminal = XNEWVEC (char, 28); /* Enough for long long. */ |
| |
| terminal[0] = '#'; |
| bfd_sprintf_vma (stdoutput, terminal + 1, val); |
| return terminal; |
| } |
| |
| /* Convert given expression to a new complex-relocation symbol name. |
| This is a recursive function, since it traverses the entire given |
| expression tree. The caller owns the returning string, so should |
| free() it eventually. Errors are indicated via as_bad() and a NULL |
| return value. */ |
| |
| char * |
| symbol_relc_make_expr (expressionS * exp) |
| { |
| const char * opstr = NULL; /* Operator prefix string. */ |
| int arity = 0; /* Arity of this operator. */ |
| char * operands[3]; /* Up to three operands. */ |
| char * concat_string = NULL; |
| |
| operands[0] = operands[1] = operands[2] = NULL; |
| |
| gas_assert (exp != NULL); |
| |
| /* Match known operators -> fill in opstr, arity, operands[] and fall |
| through to construct subexpression fragments; may instead return |
| string directly for leaf nodes. */ |
| |
| /* See expr.h for the meaning of all these enums. Many operators |
| have an unnatural arity (X_add_number implicitly added). The |
| conversion logic expands them to explicit "+" subexpressions. */ |
| |
| switch (exp->X_op) |
| { |
| default: |
| as_bad ("Unknown expression operator (enum %d)", exp->X_op); |
| break; |
| |
| /* Leaf nodes. */ |
| case O_constant: |
| return symbol_relc_make_value (exp->X_add_number); |
| |
| case O_symbol: |
| if (exp->X_add_number) |
| { |
| arity = 2; |
| opstr = "+"; |
| operands[0] = symbol_relc_make_sym (exp->X_add_symbol); |
| operands[1] = symbol_relc_make_value (exp->X_add_number); |
| break; |
| } |
| else |
| return symbol_relc_make_sym (exp->X_add_symbol); |
| |
| /* Helper macros for nesting nodes. */ |
| |
| #define HANDLE_XADD_OPT1(str_) \ |
| if (exp->X_add_number) \ |
| { \ |
| arity = 2; \ |
| opstr = "+:" str_; \ |
| operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ |
| operands[1] = symbol_relc_make_value (exp->X_add_number); \ |
| break; \ |
| } \ |
| else \ |
| { \ |
| arity = 1; \ |
| opstr = str_; \ |
| operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ |
| } \ |
| break |
| |
| #define HANDLE_XADD_OPT2(str_) \ |
| if (exp->X_add_number) \ |
| { \ |
| arity = 3; \ |
| opstr = "+:" str_; \ |
| operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ |
| operands[1] = symbol_relc_make_sym (exp->X_op_symbol); \ |
| operands[2] = symbol_relc_make_value (exp->X_add_number); \ |
| } \ |
| else \ |
| { \ |
| arity = 2; \ |
| opstr = str_; \ |
| operands[0] = symbol_relc_make_sym (exp->X_add_symbol); \ |
| operands[1] = symbol_relc_make_sym (exp->X_op_symbol); \ |
| } \ |
| break |
| |
| /* Nesting nodes. */ |
| |
| case O_uminus: HANDLE_XADD_OPT1 ("0-"); |
| case O_bit_not: HANDLE_XADD_OPT1 ("~"); |
| case O_logical_not: HANDLE_XADD_OPT1 ("!"); |
| case O_multiply: HANDLE_XADD_OPT2 ("*"); |
| case O_divide: HANDLE_XADD_OPT2 ("/"); |
| case O_modulus: HANDLE_XADD_OPT2 ("%"); |
| case O_left_shift: HANDLE_XADD_OPT2 ("<<"); |
| case O_right_shift: HANDLE_XADD_OPT2 (">>"); |
| case O_bit_inclusive_or: HANDLE_XADD_OPT2 ("|"); |
| case O_bit_exclusive_or: HANDLE_XADD_OPT2 ("^"); |
| case O_bit_and: HANDLE_XADD_OPT2 ("&"); |
| case O_add: HANDLE_XADD_OPT2 ("+"); |
| case O_subtract: HANDLE_XADD_OPT2 ("-"); |
| case O_eq: HANDLE_XADD_OPT2 ("=="); |
| case O_ne: HANDLE_XADD_OPT2 ("!="); |
| case O_lt: HANDLE_XADD_OPT2 ("<"); |
| case O_le: HANDLE_XADD_OPT2 ("<="); |
| case O_ge: HANDLE_XADD_OPT2 (">="); |
| case O_gt: HANDLE_XADD_OPT2 (">"); |
| case O_logical_and: HANDLE_XADD_OPT2 ("&&"); |
| case O_logical_or: HANDLE_XADD_OPT2 ("||"); |
| } |
| |
| /* Validate & reject early. */ |
| if (arity >= |