blob: 10a2ff3bf0823fa7677049ed1fe0721a0265cfe9 [file] [log] [blame]
# -*- coding: utf-8 -*-
"""Calculate the perimeter of a glyph."""
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.pens.basePen import BasePen
from fontTools.misc.bezierTools import splitQuadraticAtT, splitCubicAtT, approximateQuadraticArcLengthC, calcQuadraticArcLengthC, approximateCubicArcLengthC
import math
__all__ = ["PerimeterPen"]
def _distance(p0, p1):
return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
def _split_cubic_into_two(p0, p1, p2, p3):
mid = (p0 + 3 * (p1 + p2) + p3) * .125
deriv3 = (p3 + p2 - p1 - p0) * .125
return ((p0, (p0 + p1) * .5, mid - deriv3, mid),
(mid, mid + deriv3, (p2 + p3) * .5, p3))
class PerimeterPen(BasePen):
def __init__(self, glyphset=None, tolerance=0.005):
BasePen.__init__(self, glyphset)
self.value = 0
self._mult = 1.+1.5*tolerance # The 1.5 is a empirical hack; no math
# Choose which algorithm to use for quadratic and for cubic.
# Quadrature is faster but has fixed error characteristic with no strong
# error bound. The cutoff points are derived empirically.
self._addCubic = self._addCubicQuadrature if tolerance >= 0.0015 else self._addCubicRecursive
self._addQuadratic = self._addQuadraticQuadrature if tolerance >= 0.00075 else self._addQuadraticExact
def _moveTo(self, p0):
self.__startPoint = p0
def _closePath(self):
p0 = self._getCurrentPoint()
if p0 != self.__startPoint:
self._lineTo(self.__startPoint)
def _lineTo(self, p1):
p0 = self._getCurrentPoint()
self.value += _distance(p0, p1)
def _addQuadraticExact(self, c0, c1, c2):
self.value += calcQuadraticArcLengthC(c0, c1, c2)
def _addQuadraticQuadrature(self, c0, c1, c2):
self.value += approximateQuadraticArcLengthC(c0, c1, c2)
def _qCurveToOne(self, p1, p2):
p0 = self._getCurrentPoint()
self._addQuadratic(complex(*p0), complex(*p1), complex(*p2))
def _addCubicRecursive(self, p0, p1, p2, p3):
arch = abs(p0-p3)
box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3)
if arch * self._mult >= box:
self.value += (arch + box) * .5
else:
one,two = _split_cubic_into_two(p0,p1,p2,p3)
self._addCubicRecursive(*one)
self._addCubicRecursive(*two)
def _addCubicQuadrature(self, c0, c1, c2, c3):
self.value += approximateCubicArcLengthC(c0, c1, c2, c3)
def _curveToOne(self, p1, p2, p3):
p0 = self._getCurrentPoint()
self._addCubic(complex(*p0), complex(*p1), complex(*p2), complex(*p3))