blob: d09efac43e0d706447b94a4febc34cdcb70a816e [file] [log] [blame]
from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.pens.basePen import BasePen
from functools import partial
from itertools import count
import sympy as sp
import sys
n = 3 # Max Bezier degree; 3 for cubic, 2 for quadratic
t, x, y = sp.symbols('t x y', real=True)
c = sp.symbols('c', real=False) # Complex representation instead of x/y
X = tuple(sp.symbols('x:%d'%(n+1), real=True))
Y = tuple(sp.symbols('y:%d'%(n+1), real=True))
P = tuple(zip(*(sp.symbols('p:%d[%s]'%(n+1,w), real=True) for w in '01')))
C = tuple(sp.symbols('c:%d'%(n+1), real=False))
# Cubic Bernstein basis functions
BinomialCoefficient = [(1, 0)]
for i in range(1, n+1):
last = BinomialCoefficient[-1]
this = tuple(last[j-1]+last[j] for j in range(len(last)))+(0,)
BinomialCoefficient.append(this)
BinomialCoefficient = tuple(tuple(item[:-1]) for item in BinomialCoefficient)
del last, this
BernsteinPolynomial = tuple(
tuple(c * t**i * (1-t)**(n-i) for i,c in enumerate(coeffs))
for n,coeffs in enumerate(BinomialCoefficient))
BezierCurve = tuple(
tuple(sum(P[i][j]*bernstein for i,bernstein in enumerate(bernsteins))
for j in range(2))
for n,bernsteins in enumerate(BernsteinPolynomial))
BezierCurveC = tuple(
sum(C[i]*bernstein for i,bernstein in enumerate(bernsteins))
for n,bernsteins in enumerate(BernsteinPolynomial))
def green(f, curveXY):
f = -sp.integrate(sp.sympify(f), y)
f = f.subs({x:curveXY[0], y:curveXY[1]})
f = sp.integrate(f * sp.diff(curveXY[0], t), (t, 0, 1))
return f
class _BezierFuncsLazy(dict):
def __init__(self, symfunc):
self._symfunc = symfunc
self._bezfuncs = {}
def __missing__(self, i):
args = ['p%d'%d for d in range(i+1)]
f = green(self._symfunc, BezierCurve[i])
f = sp.gcd_terms(f.collect(sum(P,()))) # Optimize
return sp.lambdify(args, f)
class GreenPen(BasePen):
_BezierFuncs = {}
@classmethod
def _getGreenBezierFuncs(celf, func):
funcstr = str(func)
if not funcstr in celf._BezierFuncs:
celf._BezierFuncs[funcstr] = _BezierFuncsLazy(func)
return celf._BezierFuncs[funcstr]
def __init__(self, func, glyphset=None):
BasePen.__init__(self, glyphset)
self._funcs = self._getGreenBezierFuncs(func)
self.value = 0
def _moveTo(self, p0):
self.__startPoint = p0
def _closePath(self):
p0 = self._getCurrentPoint()
if p0 != self.__startPoint:
self._lineTo(self.__startPoint)
def _endPath(self):
p0 = self._getCurrentPoint()
if p0 != self.__startPoint:
# Green theorem is not defined on open contours.
raise NotImplementedError
def _lineTo(self, p1):
p0 = self._getCurrentPoint()
self.value += self._funcs[1](p0, p1)
def _qCurveToOne(self, p1, p2):
p0 = self._getCurrentPoint()
self.value += self._funcs[2](p0, p1, p2)
def _curveToOne(self, p1, p2, p3):
p0 = self._getCurrentPoint()
self.value += self._funcs[3](p0, p1, p2, p3)
# Sample pens.
# Do not use this in real code.
# Use fontTools.pens.momentsPen.MomentsPen instead.
AreaPen = partial(GreenPen, func=1)
MomentXPen = partial(GreenPen, func=x)
MomentYPen = partial(GreenPen, func=y)
MomentXXPen = partial(GreenPen, func=x*x)
MomentYYPen = partial(GreenPen, func=y*y)
MomentXYPen = partial(GreenPen, func=x*y)
def printGreenPen(penName, funcs, file=sys.stdout):
print(
'''from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.pens.basePen import BasePen
class %s(BasePen):
def __init__(self, glyphset=None):
BasePen.__init__(self, glyphset)
'''%penName, file=file)
for name,f in funcs:
print(' self.%s = 0' % name, file=file)
print('''
def _moveTo(self, p0):
self.__startPoint = p0
def _closePath(self):
p0 = self._getCurrentPoint()
if p0 != self.__startPoint:
self._lineTo(self.__startPoint)
def _endPath(self):
p0 = self._getCurrentPoint()
if p0 != self.__startPoint:
# Green theorem is not defined on open contours.
raise NotImplementedError
''', end='', file=file)
for n in (1, 2, 3):
if n == 1:
print('''
def _lineTo(self, p1):
x0,y0 = self._getCurrentPoint()
x1,y1 = p1
''', file=file)
elif n == 2:
print('''
def _qCurveToOne(self, p1, p2):
x0,y0 = self._getCurrentPoint()
x1,y1 = p1
x2,y2 = p2
''', file=file)
elif n == 3:
print('''
def _curveToOne(self, p1, p2, p3):
x0,y0 = self._getCurrentPoint()
x1,y1 = p1
x2,y2 = p2
x3,y3 = p3
''', file=file)
subs = {P[i][j]: [X, Y][j][i] for i in range(n+1) for j in range(2)}
greens = [green(f, BezierCurve[n]) for name,f in funcs]
greens = [sp.gcd_terms(f.collect(sum(P,()))) for f in greens] # Optimize
greens = [f.subs(subs) for f in greens] # Convert to p to x/y
defs, exprs = sp.cse(greens,
optimizations='basic',
symbols=(sp.Symbol('r%d'%i) for i in count()))
for name,value in defs:
print(' %s = %s' % (name, value), file=file)
print(file=file)
for name,value in zip([f[0] for f in funcs], exprs):
print(' self.%s += %s' % (name, value), file=file)
print('''
if __name__ == '__main__':
from fontTools.misc.symfont import x, y, printGreenPen
printGreenPen('%s', ['''%penName, file=file)
for name,f in funcs:
print(" ('%s', %s)," % (name, str(f)), file=file)
print(' ])', file=file)
if __name__ == '__main__':
pen = AreaPen()
pen.moveTo((100,100))
pen.lineTo((100,200))
pen.lineTo((200,200))
pen.curveTo((200,250),(300,300),(250,350))
pen.lineTo((200,100))
pen.closePath()
print(pen.value)