blob: 8ce1ab907e81ac910e88e7e8b2dc7410adeaf27f [file] [log] [blame]
import 'dart:collection';
import 'dart:convert';
import 'dart:math';
import 'dart:typed_data';
const int _sizeofUint8 = 1;
const int _sizeofUint16 = 2;
const int _sizeofUint32 = 4;
const int _sizeofUint64 = 8;
const int _sizeofInt8 = 1;
const int _sizeofInt16 = 2;
const int _sizeofInt32 = 4;
const int _sizeofInt64 = 8;
const int _sizeofFloat32 = 4;
const int _sizeofFloat64 = 8;
/// Callback used to invoke a struct builder's finish method.
///
/// This callback is used by other struct's `finish` methods to write the nested
/// struct's fields inline.
typedef StructBuilder = void Function();
/// Buffer with data and some context about it.
class BufferContext {
final ByteData _buffer;
ByteData get buffer => _buffer;
/// Create from a FlatBuffer represented by a list of bytes (uint8).
factory BufferContext.fromBytes(List<int> byteList) =>
BufferContext(byteList is Uint8List
? byteList.buffer.asByteData(byteList.offsetInBytes)
: ByteData.view(Uint8List.fromList(byteList).buffer));
/// Create from a FlatBuffer represented by ByteData.
BufferContext(this._buffer);
@pragma('vm:prefer-inline')
int derefObject(int offset) => offset + _getUint32(offset);
@pragma('vm:prefer-inline')
Uint8List _asUint8List(int offset, int length) =>
_buffer.buffer.asUint8List(_buffer.offsetInBytes + offset, length);
@pragma('vm:prefer-inline')
double _getFloat64(int offset) => _buffer.getFloat64(offset, Endian.little);
@pragma('vm:prefer-inline')
double _getFloat32(int offset) => _buffer.getFloat32(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getInt64(int offset) => _buffer.getInt64(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getInt32(int offset) => _buffer.getInt32(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getInt16(int offset) => _buffer.getInt16(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getInt8(int offset) => _buffer.getInt8(offset);
@pragma('vm:prefer-inline')
int _getUint64(int offset) => _buffer.getUint64(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getUint32(int offset) => _buffer.getUint32(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getUint16(int offset) => _buffer.getUint16(offset, Endian.little);
@pragma('vm:prefer-inline')
int _getUint8(int offset) => _buffer.getUint8(offset);
}
/// Interface implemented by the "object-api" classes (ending with "T").
abstract class Packable {
/// Serialize the object using the given builder, returning the offset.
int pack(Builder fbBuilder);
}
/// Class implemented by typed builders generated by flatc.
abstract class ObjectBuilder {
int? _firstOffset;
/// Can be used to write the data represented by this builder to the [Builder]
/// and reuse the offset created in multiple tables.
///
/// Note that this method assumes you call it using the same [Builder] instance
/// every time. The returned offset is only good for the [Builder] used in the
/// first call to this method.
int getOrCreateOffset(Builder fbBuilder) {
_firstOffset ??= finish(fbBuilder);
return _firstOffset!;
}
/// Writes the data in this helper to the [Builder].
int finish(Builder fbBuilder);
/// Convenience method that will create a new [Builder], [finish]es the data,
/// and returns the buffer as a [Uint8List] of bytes.
Uint8List toBytes();
}
/// Class that helps building flat buffers.
class Builder {
bool _finished = false;
final int initialSize;
/// The list of existing VTable(s).
final List<int> _vTables;
final bool deduplicateTables;
ByteData _buf;
final Allocator _allocator;
/// The maximum alignment that has been seen so far. If [_buf] has to be
/// reallocated in the future (to insert room at its start for more bytes) the
/// reallocation will need to be a multiple of this many bytes.
int _maxAlign = 1;
/// The number of bytes that have been written to the buffer so far. The
/// most recently written byte is this many bytes from the end of [_buf].
int _tail = 0;
/// The location of the end of the current table, measured in bytes from the
/// end of [_buf].
int _currentTableEndTail = 0;
_VTable? _currentVTable;
/// Map containing all strings that have been written so far. This allows us
/// to avoid duplicating strings.
///
/// Allocated only if `internStrings` is set to true on the constructor.
Map<String, int>? _strings;
/// Creates a new FlatBuffers Builder.
///
/// `initialSize` is the initial array size in bytes. The [Builder] will
/// automatically grow the array if/as needed. `internStrings`, if set to
/// true, will cause [writeString] to pool strings in the buffer so that
/// identical strings will always use the same offset in tables.
Builder({
this.initialSize = 1024,
bool internStrings = false,
Allocator allocator = const DefaultAllocator(),
this.deduplicateTables = true,
}) : _allocator = allocator,
_buf = allocator.allocate(initialSize),
_vTables = deduplicateTables ? [] : const [] {
if (internStrings) {
_strings = <String, int>{};
}
}
/// Calculate the finished buffer size (aligned).
@pragma('vm:prefer-inline')
int size() => _tail + ((-_tail) & (_maxAlign - 1));
/// Add the [field] with the given boolean [value]. The field is not added if
/// the [value] is equal to [def]. Booleans are stored as 8-bit fields with
/// `0` for `false` and `1` for `true`.
void addBool(int field, bool? value, [bool? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofUint8, 1);
_trackField(field);
_buf.setInt8(_buf.lengthInBytes - _tail, value ? 1 : 0);
}
}
/// Add the [field] with the given 32-bit signed integer [value]. The field is
/// not added if the [value] is equal to [def].
void addInt32(int field, int? value, [int? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofInt32, 1);
_trackField(field);
_setInt32AtTail(_tail, value);
}
}
/// Add the [field] with the given 32-bit signed integer [value]. The field is
/// not added if the [value] is equal to [def].
void addInt16(int field, int? value, [int? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofInt16, 1);
_trackField(field);
_setInt16AtTail(_tail, value);
}
}
/// Add the [field] with the given 8-bit signed integer [value]. The field is
/// not added if the [value] is equal to [def].
void addInt8(int field, int? value, [int? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofInt8, 1);
_trackField(field);
_setInt8AtTail(_tail, value);
}
}
void addStruct(int field, int offset) {
assert(_inVTable);
_trackField(field);
_currentVTable!.addField(field, offset);
}
/// Add the [field] referencing an object with the given [offset].
void addOffset(int field, int? offset) {
assert(_inVTable);
if (offset != null) {
_prepare(_sizeofUint32, 1);
_trackField(field);
_setUint32AtTail(_tail, _tail - offset);
}
}
/// Add the [field] with the given 32-bit unsigned integer [value]. The field
/// is not added if the [value] is equal to [def].
void addUint32(int field, int? value, [int? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofUint32, 1);
_trackField(field);
_setUint32AtTail(_tail, value);
}
}
/// Add the [field] with the given 32-bit unsigned integer [value]. The field
/// is not added if the [value] is equal to [def].
void addUint16(int field, int? value, [int? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofUint16, 1);
_trackField(field);
_setUint16AtTail(_tail, value);
}
}
/// Add the [field] with the given 8-bit unsigned integer [value]. The field
/// is not added if the [value] is equal to [def].
void addUint8(int field, int? value, [int? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofUint8, 1);
_trackField(field);
_setUint8AtTail(_tail, value);
}
}
/// Add the [field] with the given 32-bit float [value]. The field
/// is not added if the [value] is equal to [def].
void addFloat32(int field, double? value, [double? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofFloat32, 1);
_trackField(field);
_setFloat32AtTail(_tail, value);
}
}
/// Add the [field] with the given 64-bit double [value]. The field
/// is not added if the [value] is equal to [def].
void addFloat64(int field, double? value, [double? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofFloat64, 1);
_trackField(field);
_setFloat64AtTail(_tail, value);
}
}
/// Add the [field] with the given 64-bit unsigned integer [value]. The field
/// is not added if the [value] is equal to [def].
void addUint64(int field, int? value, [double? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofUint64, 1);
_trackField(field);
_setUint64AtTail(_tail, value);
}
}
/// Add the [field] with the given 64-bit unsigned integer [value]. The field
/// is not added if the [value] is equal to [def].
void addInt64(int field, int? value, [double? def]) {
assert(_inVTable);
if (value != null && value != def) {
_prepare(_sizeofInt64, 1);
_trackField(field);
_setInt64AtTail(_tail, value);
}
}
/// End the current table and return its offset.
int endTable() {
assert(_inVTable);
// Prepare for writing the VTable.
_prepare(_sizeofInt32, 1);
var tableTail = _tail;
// Prepare the size of the current table.
final currentVTable = _currentVTable!;
currentVTable.tableSize = tableTail - _currentTableEndTail;
// Prepare the VTable to use for the current table.
int? vTableTail;
{
currentVTable.computeFieldOffsets(tableTail);
// Try to find an existing compatible VTable.
if (deduplicateTables) {
// Search backward - more likely to have recently used one
for (var i = _vTables.length - 1; i >= 0; i--) {
final vt2Offset = _vTables[i];
final vt2Start = _buf.lengthInBytes - vt2Offset;
final vt2Size = _buf.getUint16(vt2Start, Endian.little);
if (currentVTable._vTableSize == vt2Size &&
currentVTable._offsetsMatch(vt2Start, _buf)) {
vTableTail = vt2Offset;
break;
}
}
}
// Write a new VTable.
if (vTableTail == null) {
_prepare(_sizeofUint16, _currentVTable!.numOfUint16);
vTableTail = _tail;
currentVTable.tail = vTableTail;
currentVTable.output(_buf, _buf.lengthInBytes - _tail);
if (deduplicateTables) _vTables.add(currentVTable.tail);
}
}
// Set the VTable offset.
_setInt32AtTail(tableTail, vTableTail - tableTail);
// Done with this table.
_currentVTable = null;
return tableTail;
}
/// Returns the finished buffer. You must call [finish] before accessing this.
@pragma('vm:prefer-inline')
Uint8List get buffer {
assert(_finished);
final finishedSize = size();
return _buf.buffer
.asUint8List(_buf.lengthInBytes - finishedSize, finishedSize);
}
/// Finish off the creation of the buffer. The given [offset] is used as the
/// root object offset, and usually references directly or indirectly every
/// written object. If [fileIdentifier] is specified (and not `null`), it is
/// interpreted as a 4-byte Latin-1 encoded string that should be placed at
/// bytes 4-7 of the file.
void finish(int offset, [String? fileIdentifier]) {
final sizeBeforePadding = size();
final requiredBytes = _sizeofUint32 * (fileIdentifier == null ? 1 : 2);
_prepare(max(requiredBytes, _maxAlign), 1);
final finishedSize = size();
_setUint32AtTail(finishedSize, finishedSize - offset);
if (fileIdentifier != null) {
for (var i = 0; i < 4; i++) {
_setUint8AtTail(
finishedSize - _sizeofUint32 - i, fileIdentifier.codeUnitAt(i));
}
}
// zero out the added padding
for (var i = sizeBeforePadding + 1;
i <= finishedSize - requiredBytes;
i++) {
_setUint8AtTail(i, 0);
}
_finished = true;
}
/// Writes a Float64 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putFloat64(double value) {
_prepare(_sizeofFloat64, 1);
_setFloat32AtTail(_tail, value);
}
/// Writes a Float32 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putFloat32(double value) {
_prepare(_sizeofFloat32, 1);
_setFloat32AtTail(_tail, value);
}
/// Writes a bool to the tail of the buffer after preparing space for it.
/// Bools are represented as a Uint8, with the value set to '1' for true, and '0' for false
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putBool(bool value) {
_prepare(_sizeofUint8, 1);
_buf.setInt8(_buf.lengthInBytes - _tail, value ? 1 : 0);
}
/// Writes a Int64 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putInt64(int value) {
_prepare(_sizeofInt64, 1);
_setInt64AtTail(_tail, value);
}
/// Writes a Uint32 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putInt32(int value) {
_prepare(_sizeofInt32, 1);
_setInt32AtTail(_tail, value);
}
/// Writes a Uint16 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putInt16(int value) {
_prepare(_sizeofInt16, 1);
_setInt16AtTail(_tail, value);
}
/// Writes a Uint8 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putInt8(int value) {
_prepare(_sizeofInt8, 1);
_buf.setInt8(_buf.lengthInBytes - _tail, value);
}
/// Writes a Uint64 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putUint64(int value) {
_prepare(_sizeofUint64, 1);
_setUint64AtTail(_tail, value);
}
/// Writes a Uint32 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putUint32(int value) {
_prepare(_sizeofUint32, 1);
_setUint32AtTail(_tail, value);
}
/// Writes a Uint16 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putUint16(int value) {
_prepare(_sizeofUint16, 1);
_setUint16AtTail(_tail, value);
}
/// Writes a Uint8 to the tail of the buffer after preparing space for it.
///
/// Updates the [offset] pointer. This method is intended for use when writing structs to the buffer.
void putUint8(int value) {
_prepare(_sizeofUint8, 1);
_buf.setUint8(_buf.lengthInBytes - _tail, value);
}
/// Reset the builder and make it ready for filling a new buffer.
void reset() {
_finished = false;
_maxAlign = 1;
_tail = 0;
_currentVTable = null;
if (deduplicateTables) _vTables.clear();
if (_strings != null) {
_strings = <String, int>{};
}
}
/// Start a new table. Must be finished with [endTable] invocation.
void startTable(int numFields) {
assert(!_inVTable); // Inline tables are not supported.
_currentVTable = _VTable(numFields);
_currentTableEndTail = _tail;
}
/// Finish a Struct vector. Most callers should preferto use [writeListOfStructs].
///
/// Most callers should prefer [writeListOfStructs].
int endStructVector(int count) {
putUint32(count);
return _tail;
}
/// Writes a list of Structs to the buffer, returning the offset
int writeListOfStructs(List<ObjectBuilder> structBuilders) {
assert(!_inVTable);
for (var i = structBuilders.length - 1; i >= 0; i--) {
structBuilders[i].finish(this);
}
return endStructVector(structBuilders.length);
}
/// Write the given list of [values].
int writeList(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1 + values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setUint32AtTail(tail, tail - value);
tail -= _sizeofUint32;
}
return result;
}
/// Write the given list of 64-bit float [values].
int writeListFloat64(List<double> values) {
assert(!_inVTable);
_prepare(_sizeofFloat64, values.length, additionalBytes: _sizeofUint32);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setFloat64AtTail(tail, value);
tail -= _sizeofFloat64;
}
return result;
}
/// Write the given list of 32-bit float [values].
int writeListFloat32(List<double> values) {
assert(!_inVTable);
_prepare(_sizeofFloat32, 1 + values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setFloat32AtTail(tail, value);
tail -= _sizeofFloat32;
}
return result;
}
/// Write the given list of signed 64-bit integer [values].
int writeListInt64(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofInt64, values.length, additionalBytes: _sizeofUint32);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setInt64AtTail(tail, value);
tail -= _sizeofInt64;
}
return result;
}
/// Write the given list of signed 64-bit integer [values].
int writeListUint64(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint64, values.length, additionalBytes: _sizeofUint32);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setUint64AtTail(tail, value);
tail -= _sizeofUint64;
}
return result;
}
/// Write the given list of signed 32-bit integer [values].
int writeListInt32(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1 + values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setInt32AtTail(tail, value);
tail -= _sizeofInt32;
}
return result;
}
/// Write the given list of unsigned 32-bit integer [values].
int writeListUint32(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1 + values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setUint32AtTail(tail, value);
tail -= _sizeofUint32;
}
return result;
}
/// Write the given list of signed 16-bit integer [values].
int writeListInt16(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1, additionalBytes: 2 * values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setInt16AtTail(tail, value);
tail -= _sizeofInt16;
}
return result;
}
/// Write the given list of unsigned 16-bit integer [values].
int writeListUint16(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1, additionalBytes: 2 * values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setUint16AtTail(tail, value);
tail -= _sizeofUint16;
}
return result;
}
/// Write the given list of bools as unsigend 8-bit integer [values].
int writeListBool(List<bool> values) {
return writeListUint8(values.map((b) => b ? 1 : 0).toList());
}
/// Write the given list of signed 8-bit integer [values].
int writeListInt8(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1, additionalBytes: values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setInt8AtTail(tail, value);
tail -= _sizeofUint8;
}
return result;
}
/// Write the given list of unsigned 8-bit integer [values].
int writeListUint8(List<int> values) {
assert(!_inVTable);
_prepare(_sizeofUint32, 1, additionalBytes: values.length);
final result = _tail;
var tail = _tail;
_setUint32AtTail(tail, values.length);
tail -= _sizeofUint32;
for (var value in values) {
_setUint8AtTail(tail, value);
tail -= _sizeofUint8;
}
return result;
}
/// Write the given string [value] and return its offset.
///
/// Dart strings are UTF-16 but must be stored as UTF-8 in FlatBuffers.
/// If the given string consists only of ASCII characters, you can indicate
/// enable [asciiOptimization]. In this mode, [writeString()] first tries to
/// copy the ASCII string directly to the output buffer and if that fails
/// (because there are no-ASCII characters in the string) it falls back and to
/// the default UTF-16 -> UTF-8 conversion (with slight performance penalty).
int writeString(String value, {bool asciiOptimization = false}) {
assert(!_inVTable);
if (_strings != null) {
return _strings!
.putIfAbsent(value, () => _writeString(value, asciiOptimization));
} else {
return _writeString(value, asciiOptimization);
}
}
int _writeString(String value, bool asciiOptimization) {
if (asciiOptimization) {
// [utf8.encode()] is slow (up to at least Dart SDK 2.13). If the given
// string is ASCII we can just write it directly, without any conversion.
final originalTail = _tail;
if (_tryWriteASCIIString(value)) return _tail;
// if non-ASCII: reset the output buffer position for [_writeUTFString()]
_tail = originalTail;
}
_writeUTFString(value);
return _tail;
}
// Try to write the string as ASCII, return false if there's a non-ascii char.
@pragma('vm:prefer-inline')
bool _tryWriteASCIIString(String value) {
_prepare(4, 1, additionalBytes: value.length + 1);
final length = value.length;
var offset = _buf.lengthInBytes - _tail + 4;
for (var i = 0; i < length; i++) {
// utf16 code unit, e.g. for '†' it's [0x20 0x20], which is 8224 decimal.
// ASCII characters go from 0x00 to 0x7F (which is 0 to 127 decimal).
final char = value.codeUnitAt(i);
if ((char & ~0x7F) != 0) {
return false;
}
_buf.setUint8(offset++, char);
}
_buf.setUint8(offset, 0); // trailing zero
_setUint32AtTail(_tail, value.length);
return true;
}
@pragma('vm:prefer-inline')
void _writeUTFString(String value) {
final bytes = utf8.encode(value) as Uint8List;
final length = bytes.length;
_prepare(4, 1, additionalBytes: length + 1);
_setUint32AtTail(_tail, length);
var offset = _buf.lengthInBytes - _tail + 4;
for (var i = 0; i < length; i++) {
_buf.setUint8(offset++, bytes[i]);
}
_buf.setUint8(offset, 0); // trailing zero
}
/// Used to assert whether a "Table" is currently being built.
///
/// If you hit `assert(!_inVTable())`, you're trying to add table fields
/// without starting a table with [Builder.startTable()].
///
/// If you hit `assert(_inVTable())`, you're trying to construct a
/// Table/Vector/String during the construction of its parent table,
/// between the MyTableBuilder and [Builder.endTable()].
/// Move the creation of these sub-objects to before the MyTableBuilder to
/// not get this assert.
@pragma('vm:prefer-inline')
bool get _inVTable => _currentVTable != null;
/// The number of bytes that have been written to the buffer so far. The
/// most recently written byte is this many bytes from the end of the buffer.
@pragma('vm:prefer-inline')
int get offset => _tail;
/// Zero-pads the buffer, which may be required for some struct layouts.
@pragma('vm:prefer-inline')
void pad(int howManyBytes) {
for (var i = 0; i < howManyBytes; i++) {
putUint8(0);
}
}
/// Prepare for writing the given `count` of scalars of the given `size`.
/// Additionally allocate the specified `additionalBytes`. Update the current
/// tail pointer to point at the allocated space.
@pragma('vm:prefer-inline')
void _prepare(int size, int count, {int additionalBytes = 0}) {
assert(!_finished);
// Update the alignment.
if (_maxAlign < size) {
_maxAlign = size;
}
// Prepare amount of required space.
var dataSize = size * count + additionalBytes;
var alignDelta = (-(_tail + dataSize)) & (size - 1);
var bufSize = alignDelta + dataSize;
// Ensure that we have the required amount of space.
{
var oldCapacity = _buf.lengthInBytes;
if (_tail + bufSize > oldCapacity) {
var desiredNewCapacity = (oldCapacity + bufSize) * 2;
var deltaCapacity = desiredNewCapacity - oldCapacity;
deltaCapacity += (-deltaCapacity) & (_maxAlign - 1);
var newCapacity = oldCapacity + deltaCapacity;
_buf = _allocator.resize(_buf, newCapacity, _tail, 0);
}
}
// zero out the added padding
for (var i = _tail + 1; i <= _tail + alignDelta; i++) {
_setUint8AtTail(i, 0);
}
// Update the tail pointer.
_tail += bufSize;
}
/// Record the offset of the given [field].
@pragma('vm:prefer-inline')
void _trackField(int field) => _currentVTable!.addField(field, _tail);
@pragma('vm:prefer-inline')
void _setFloat64AtTail(int tail, double x) =>
_buf.setFloat64(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setFloat32AtTail(int tail, double x) =>
_buf.setFloat32(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setUint64AtTail(int tail, int x) =>
_buf.setUint64(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setInt64AtTail(int tail, int x) =>
_buf.setInt64(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setInt32AtTail(int tail, int x) =>
_buf.setInt32(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setUint32AtTail(int tail, int x) =>
_buf.setUint32(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setInt16AtTail(int tail, int x) =>
_buf.setInt16(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setUint16AtTail(int tail, int x) =>
_buf.setUint16(_buf.lengthInBytes - tail, x, Endian.little);
@pragma('vm:prefer-inline')
void _setInt8AtTail(int tail, int x) =>
_buf.setInt8(_buf.lengthInBytes - tail, x);
@pragma('vm:prefer-inline')
void _setUint8AtTail(int tail, int x) =>
_buf.setUint8(_buf.lengthInBytes - tail, x);
}
/// Reader of lists of boolean values.
///
/// The returned unmodifiable lists lazily read values on access.
class BoolListReader extends Reader<List<bool>> {
const BoolListReader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
List<bool> read(BufferContext bc, int offset) =>
_FbBoolList(bc, bc.derefObject(offset));
}
/// The reader of booleans.
class BoolReader extends Reader<bool> {
const BoolReader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint8;
@override
@pragma('vm:prefer-inline')
bool read(BufferContext bc, int offset) => bc._getInt8(offset) != 0;
}
/// The reader of lists of 64-bit float values.
///
/// The returned unmodifiable lists lazily read values on access.
class Float64ListReader extends Reader<List<double>> {
const Float64ListReader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofFloat64;
@override
@pragma('vm:prefer-inline')
List<double> read(BufferContext bc, int offset) =>
_FbFloat64List(bc, bc.derefObject(offset));
}
class Float32ListReader extends Reader<List<double>> {
const Float32ListReader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofFloat32;
@override
@pragma('vm:prefer-inline')
List<double> read(BufferContext bc, int offset) =>
_FbFloat32List(bc, bc.derefObject(offset));
}
class Float64Reader extends Reader<double> {
const Float64Reader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofFloat64;
@override
@pragma('vm:prefer-inline')
double read(BufferContext bc, int offset) => bc._getFloat64(offset);
}
class Float32Reader extends Reader<double> {
const Float32Reader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofFloat32;
@override
@pragma('vm:prefer-inline')
double read(BufferContext bc, int offset) => bc._getFloat32(offset);
}
class Int64Reader extends Reader<int> {
const Int64Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofInt64;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getInt64(offset);
}
/// The reader of signed 32-bit integers.
class Int32Reader extends Reader<int> {
const Int32Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofInt32;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getInt32(offset);
}
/// The reader of signed 32-bit integers.
class Int16Reader extends Reader<int> {
const Int16Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofInt16;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getInt16(offset);
}
/// The reader of 8-bit signed integers.
class Int8Reader extends Reader<int> {
const Int8Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofInt8;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getInt8(offset);
}
/// The reader of lists of objects. Lazy by default - see [lazy].
class ListReader<E> extends Reader<List<E>> {
final Reader<E> _elementReader;
/// Enables lazy reading of the list
///
/// If true, the returned unmodifiable list lazily reads objects on access.
/// Therefore, the underlying buffer must not change while accessing the list.
///
/// If false, reads the whole list immediately on access.
final bool lazy;
const ListReader(this._elementReader, {this.lazy = true});
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
List<E> read(BufferContext bc, int offset) {
final listOffset = bc.derefObject(offset);
return lazy
? _FbGenericList<E>(_elementReader, bc, listOffset)
: List<E>.generate(
bc.buffer.getUint32(listOffset, Endian.little),
(int index) => _elementReader.read(
bc, listOffset + size + _elementReader.size * index),
growable: true);
}
}
/// Object that can read a value at a [BufferContext].
abstract class Reader<T> {
const Reader();
/// The size of the value in bytes.
int get size;
/// Read the value at the given [offset] in [bc].
T read(BufferContext bc, int offset);
/// Read the value of the given [field] in the given [object].
@pragma('vm:prefer-inline')
T vTableGet(BufferContext object, int offset, int field, T defaultValue) {
var fieldOffset = _vTableFieldOffset(object, offset, field);
return fieldOffset == 0 ? defaultValue : read(object, offset + fieldOffset);
}
/// Read the value of the given [field] in the given [object].
@pragma('vm:prefer-inline')
T? vTableGetNullable(BufferContext object, int offset, int field) {
var fieldOffset = _vTableFieldOffset(object, offset, field);
return fieldOffset == 0 ? null : read(object, offset + fieldOffset);
}
@pragma('vm:prefer-inline')
int _vTableFieldOffset(BufferContext object, int offset, int field) {
var vTableSOffset = object._getInt32(offset);
var vTableOffset = offset - vTableSOffset;
var vTableSize = object._getUint16(vTableOffset);
if (field >= vTableSize) return 0;
return object._getUint16(vTableOffset + field);
}
}
/// The reader of string values.
class StringReader extends Reader<String> {
final bool asciiOptimization;
const StringReader({this.asciiOptimization = false}) : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
String read(BufferContext bc, int offset) {
var strOffset = bc.derefObject(offset);
var length = bc._getUint32(strOffset);
var bytes = bc._asUint8List(strOffset + _sizeofUint32, length);
if (asciiOptimization && _isLatin(bytes)) {
return String.fromCharCodes(bytes);
}
return utf8.decode(bytes);
}
@pragma('vm:prefer-inline')
static bool _isLatin(Uint8List bytes) {
var length = bytes.length;
for (var i = 0; i < length; i++) {
if (bytes[i] > 127) {
return false;
}
}
return true;
}
}
/// An abstract reader for structs.
abstract class StructReader<T> extends Reader<T> {
const StructReader();
/// Return the object at `offset`.
T createObject(BufferContext bc, int offset);
@override
T read(BufferContext bc, int offset) {
return createObject(bc, offset);
}
}
/// An abstract reader for tables.
abstract class TableReader<T> extends Reader<T> {
const TableReader();
@override
@pragma('vm:prefer-inline')
int get size => 4;
/// Return the object at [offset].
T createObject(BufferContext bc, int offset);
@override
T read(BufferContext bc, int offset) {
var objectOffset = bc.derefObject(offset);
return createObject(bc, objectOffset);
}
}
/// Reader of lists of unsigned 32-bit integer values.
///
/// The returned unmodifiable lists lazily read values on access.
class Uint32ListReader extends Reader<List<int>> {
const Uint32ListReader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
List<int> read(BufferContext bc, int offset) =>
_FbUint32List(bc, bc.derefObject(offset));
}
/// The reader of unsigned 64-bit integers.
///
/// WARNING: May have compatibility issues with JavaScript
class Uint64Reader extends Reader<int> {
const Uint64Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint64;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getUint64(offset);
}
/// The reader of unsigned 32-bit integers.
class Uint32Reader extends Reader<int> {
const Uint32Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getUint32(offset);
}
/// Reader of lists of unsigned 32-bit integer values.
///
/// The returned unmodifiable lists lazily read values on access.
class Uint16ListReader extends Reader<List<int>> {
const Uint16ListReader();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
List<int> read(BufferContext bc, int offset) =>
_FbUint16List(bc, bc.derefObject(offset));
}
/// The reader of unsigned 32-bit integers.
class Uint16Reader extends Reader<int> {
const Uint16Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint16;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getUint16(offset);
}
/// Reader of unmodifiable binary data (a list of unsigned 8-bit integers).
class Uint8ListReader extends Reader<List<int>> {
/// Enables lazy reading of the list
///
/// If true, the returned unmodifiable list lazily reads bytes on access.
/// Therefore, the underlying buffer must not change while accessing the list.
///
/// If false, reads the whole list immediately as an Uint8List.
final bool lazy;
const Uint8ListReader({this.lazy = true});
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
List<int> read(BufferContext bc, int offset) {
final listOffset = bc.derefObject(offset);
if (lazy) return _FbUint8List(bc, listOffset);
final length = bc._getUint32(listOffset);
final result = Uint8List(length);
var pos = listOffset + _sizeofUint32;
for (var i = 0; i < length; i++, pos++) {
result[i] = bc._getUint8(pos);
}
return result;
}
}
/// The reader of unsigned 8-bit integers.
class Uint8Reader extends Reader<int> {
const Uint8Reader() : super();
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint8;
@override
@pragma('vm:prefer-inline')
int read(BufferContext bc, int offset) => bc._getUint8(offset);
}
/// Reader of unmodifiable binary data (a list of signed 8-bit integers).
class Int8ListReader extends Reader<List<int>> {
/// Enables lazy reading of the list
///
/// If true, the returned unmodifiable list lazily reads bytes on access.
/// Therefore, the underlying buffer must not change while accessing the list.
///
/// If false, reads the whole list immediately as an Uint8List.
final bool lazy;
const Int8ListReader({this.lazy = true});
@override
@pragma('vm:prefer-inline')
int get size => _sizeofUint32;
@override
@pragma('vm:prefer-inline')
List<int> read(BufferContext bc, int offset) {
final listOffset = bc.derefObject(offset);
if (lazy) return _FbUint8List(bc, listOffset);
final length = bc._getUint32(listOffset);
final result = Int8List(length);
var pos = listOffset + _sizeofUint32;
for (var i = 0; i < length; i++, pos++) {
result[i] = bc._getInt8(pos);
}
return result;
}
}
/// The list backed by 64-bit values - Uint64 length and Float64.
class _FbFloat64List extends _FbList<double> {
_FbFloat64List(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
double operator [](int i) => bc._getFloat64(offset + 4 + 8 * i);
}
/// The list backed by 32-bit values - Float32.
class _FbFloat32List extends _FbList<double> {
_FbFloat32List(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
double operator [](int i) => bc._getFloat32(offset + 4 + 4 * i);
}
/// List backed by a generic object which may have any size.
class _FbGenericList<E> extends _FbList<E> {
final Reader<E> elementReader;
List<E?>? _items;
_FbGenericList(this.elementReader, BufferContext bp, int offset)
: super(bp, offset);
@override
@pragma('vm:prefer-inline')
E operator [](int i) {
_items ??= List<E?>.filled(length, null);
var item = _items![i];
if (item == null) {
item = elementReader.read(bc, offset + 4 + elementReader.size * i);
_items![i] = item;
}
return item!;
}
}
/// The base class for immutable lists read from flat buffers.
abstract class _FbList<E> extends Object with ListMixin<E> implements List<E> {
final BufferContext bc;
final int offset;
int? _length;
_FbList(this.bc, this.offset);
@override
@pragma('vm:prefer-inline')
int get length => _length ??= bc._getUint32(offset);
@override
set length(int i) => throw StateError('Attempt to modify immutable list');
@override
void operator []=(int i, E e) =>
throw StateError('Attempt to modify immutable list');
}
/// List backed by 32-bit unsigned integers.
class _FbUint32List extends _FbList<int> {
_FbUint32List(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
int operator [](int i) => bc._getUint32(offset + 4 + 4 * i);
}
/// List backed by 16-bit unsigned integers.
class _FbUint16List extends _FbList<int> {
_FbUint16List(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
int operator [](int i) => bc._getUint16(offset + 4 + 2 * i);
}
/// List backed by 8-bit unsigned integers.
class _FbUint8List extends _FbList<int> {
_FbUint8List(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
int operator [](int i) => bc._getUint8(offset + 4 + i);
}
/// List backed by 8-bit signed integers.
class _FbInt8List extends _FbList<int> {
_FbInt8List(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
int operator [](int i) => bc._getInt8(offset + 4 + i);
}
/// List backed by 8-bit unsigned integers.
class _FbBoolList extends _FbList<bool> {
_FbBoolList(BufferContext bc, int offset) : super(bc, offset);
@override
@pragma('vm:prefer-inline')
bool operator [](int i) => bc._getUint8(offset + 4 + i) == 1 ? true : false;
}
/// Class that describes the structure of a table.
class _VTable {
static const int _metadataLength = 4;
final int numFields;
// Note: fieldOffsets start as "tail offsets" and are then transformed by
// [computeFieldOffsets()] to actual offsets when a table is finished.
final Uint32List fieldOffsets;
bool offsetsComputed = false;
_VTable(this.numFields) : fieldOffsets = Uint32List(numFields);
/// The size of the table that uses this VTable.
int tableSize = 0;
/// The tail of this VTable. It is used to share the same VTable between
/// multiple tables of identical structure.
int tail = 0;
int get _vTableSize => numOfUint16 * _sizeofUint16;
int get numOfUint16 => 1 + 1 + numFields;
@pragma('vm:prefer-inline')
void addField(int field, int offset) {
assert(!offsetsComputed);
assert(offset > 0); // it's impossible for field to start at the buffer end
assert(offset <= 4294967295); // uint32 max
fieldOffsets[field] = offset;
}
@pragma('vm:prefer-inline')
bool _offsetsMatch(int vt2Start, ByteData buf) {
assert(offsetsComputed);
for (var i = 0; i < numFields; i++) {
if (fieldOffsets[i] !=
buf.getUint16(vt2Start + _metadataLength + (2 * i), Endian.little)) {
return false;
}
}
return true;
}
/// Fill the [fieldOffsets] field.
@pragma('vm:prefer-inline')
void computeFieldOffsets(int tableTail) {
assert(!offsetsComputed);
offsetsComputed = true;
for (var i = 0; i < numFields; i++) {
if (fieldOffsets[i] != 0) {
fieldOffsets[i] = tableTail - fieldOffsets[i];
}
}
}
/// Outputs this VTable to [buf], which is is expected to be aligned to 16-bit
/// and have at least [numOfUint16] 16-bit words available.
@pragma('vm:prefer-inline')
void output(ByteData buf, int bufOffset) {
assert(offsetsComputed);
// VTable size.
buf.setUint16(bufOffset, numOfUint16 * 2, Endian.little);
bufOffset += 2;
// Table size.
buf.setUint16(bufOffset, tableSize, Endian.little);
bufOffset += 2;
// Field offsets.
for (var i = 0; i < numFields; i++) {
buf.setUint16(bufOffset, fieldOffsets[i], Endian.little);
bufOffset += 2;
}
}
}
/// The interface that [Builder] uses to allocate buffers for encoding.
abstract class Allocator {
const Allocator();
/// Allocate a [ByteData] buffer of a given size.
ByteData allocate(int size);
/// Free the given [ByteData] buffer previously allocated by [allocate].
void deallocate(ByteData data);
/// Reallocate [newSize] bytes of memory, replacing the old [oldData]. This
/// grows downwards, and is intended specifically for use with [Builder].
/// Params [inUseBack] and [inUseFront] indicate how much of [oldData] is
/// actually in use at each end, and needs to be copied.
ByteData resize(
ByteData oldData, int newSize, int inUseBack, int inUseFront) {
final newData = allocate(newSize);
_copyDownward(oldData, newData, inUseBack, inUseFront);
deallocate(oldData);
return newData;
}
/// Called by [resize] to copy memory from [oldData] to [newData]. Only
/// memory of size [inUseFront] and [inUseBack] will be copied from the front
/// and back of the old memory allocation.
void _copyDownward(
ByteData oldData, ByteData newData, int inUseBack, int inUseFront) {
if (inUseBack != 0) {
newData.buffer.asUint8List().setAll(
newData.lengthInBytes - inUseBack,
oldData.buffer.asUint8List().getRange(
oldData.lengthInBytes - inUseBack, oldData.lengthInBytes));
}
if (inUseFront != 0) {
newData.buffer
.asUint8List()
.setAll(0, oldData.buffer.asUint8List().getRange(0, inUseFront));
}
}
}
class DefaultAllocator extends Allocator {
const DefaultAllocator();
@override
ByteData allocate(int size) => ByteData(size);
@override
void deallocate(ByteData data) {
// nothing to do, it's garbage-collected
}
}