blob: 1a435044576d30da83e909fc96e336dd39e0c660 [file] [log] [blame]
#include "parser_test.h"
#include <cmath>
#include <string>
#include "flatbuffers/idl.h"
#include "test_assert.h"
namespace flatbuffers {
namespace tests {
namespace {
// Shortcuts for the infinity.
static const auto infinity_f = std::numeric_limits<float>::infinity();
static const auto infinity_d = std::numeric_limits<double>::infinity();
// Test that parser errors are actually generated.
static void TestError_(const char *src, const char *error_substr, bool strict_json,
const char *file, int line, const char *func) {
flatbuffers::IDLOptions opts;
opts.strict_json = strict_json;
flatbuffers::Parser parser(opts);
if (parser.Parse(src)) {
TestFail("true", "false",
("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
func);
} else if (!strstr(parser.error_.c_str(), error_substr)) {
TestFail(error_substr, parser.error_.c_str(),
("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
func);
}
}
static void TestError_(const char *src, const char *error_substr, const char *file,
int line, const char *func) {
TestError_(src, error_substr, false, file, line, func);
}
#ifdef _WIN32
# define TestError(src, ...) \
TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
#else
# define TestError(src, ...) \
TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
#endif
static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
} // namespace
// Test that parsing errors occur as we'd expect.
// Also useful for coverage, making sure these paths are run.
void ErrorTest() {
// In order they appear in idl_parser.cpp
TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
TestError("\"\0", "illegal");
TestError("\"\\q", "escape code");
TestError("table ///", "documentation");
TestError("@", "illegal");
TestError("table 1", "expecting");
TestError("table X { Y:[[int]]; }", "nested vector");
TestError("table X { Y:1; }", "illegal type");
TestError("table X { Y:int; Y:int; }", "field already");
TestError("table Y {} table X { Y:int; }", "same as table");
TestError("struct X { Y:string; }", "only scalar");
TestError("struct X { a:uint = 42; }", "default values");
TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
TestError("struct X { Y:int (deprecated); }", "deprecate");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
"missing type field");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
"type id");
TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
true);
TestError(
"struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
"{ V:{ Y:1 } }",
"wrong number");
TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
"unknown enum value");
TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
TestError("enum X:byte { Y } enum X {", "enum already");
TestError("enum X:float {}", "underlying");
TestError("enum X:byte { Y, Y }", "value already");
TestError("enum X:byte { Y=2, Z=2 }", "unique");
TestError("enum X:byte (force_align: 4) { Y }", "force_align");
TestError("table X { Y:int; } table X {", "datatype already");
TestError("table X { } union X { }", "datatype already");
TestError("union X { } table X { }", "datatype already");
TestError("namespace A; table X { } namespace A; union X { }",
"datatype already");
TestError("namespace A; union X { } namespace A; table X { }",
"datatype already");
TestError("struct X (force_align: 7) { Y:int; }", "force_align");
TestError("struct X {}", "size 0");
TestError("{}", "no root");
TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
"end of file");
TestError("root_type X;", "unknown root");
TestError("struct X { Y:int; } root_type X;", "a table");
TestError("union X { Y }", "referenced");
TestError("union Z { X } struct X { Y:int; }", "only tables");
TestError("table X { Y:[int]; YLength:int; }", "clash");
TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
// float to integer conversion is forbidden
TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
TestError("enum X:bool { Y = true }", "must be integral");
// Array of non-scalar
TestError("table X { x:int; } struct Y { y:[X:2]; }",
"may contain only scalar or struct fields");
// Non-snake case field names
TestError("table X { Y: int; } root_type Y: {Y:1.0}", "snake_case");
// Complex defaults
TestError("table X { y: string = 1; }", "expecting: string");
TestError("table X { y: string = []; }", " Cannot assign token");
TestError("table X { y: [int] = [1]; }", "Expected `]`");
TestError("table X { y: [int] = [; }", "Expected `]`");
TestError("table X { y: [int] = \"\"; }", "type mismatch");
// An identifier can't start from sign (+|-)
TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier");
TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier");
}
void EnumOutOfRangeTest() {
TestError("enum X:byte { Y = 128 }", "enum value does not fit");
TestError("enum X:byte { Y = -129 }", "enum value does not fit");
TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
TestError("table Y{} union X { Y = -1 }", "enum value does not fit");
TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
TestError("enum X:uint { Y = -1 }", "enum value does not fit");
TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
TestError("enum X:long { Y = 9223372036854775807, Z }",
"enum value does not fit");
TestError("enum X:ulong { Y = -1 }", "does not fit");
TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128
// bit_flgs out of range
TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }",
"out of range");
}
void IntegerOutOfRangeTest() {
TestError("table T { F:byte; } root_type T; { F:128 }",
"constant does not fit");
TestError("table T { F:byte; } root_type T; { F:-129 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:256 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:32768 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:-32769 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:65536 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:2147483648 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:-2147483649 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:4294967296 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:-1 }",
"constant does not fit");
// Check fixed width aliases
TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
"does not fit");
TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
"does not fit");
TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
"does not fit");
// check out-of-int64 as int8
TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
"does not fit");
// Check default values
TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
"does not fit");
TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
"does not fit");
TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
"does not fit");
}
void InvalidFloatTest() {
auto invalid_msg = "invalid number";
auto comma_msg = "expecting: ,";
TestError("table T { F:float; } root_type T; { F:1,0 }", "");
TestError("table T { F:float; } root_type T; { F:. }", "");
TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:.e }", "");
TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
// exponent pP is mandatory for hex-float
TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0Xe }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0Xe\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"nan(1)\" }", invalid_msg);
// eE not exponent in hex-float!
TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
// floats in string
TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
// disable escapes for "number-in-string"
TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
// null is not a number constant!
TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
}
void UnicodeInvalidSurrogatesTest() {
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800abcd\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\n\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\uD800\"}",
"multiple high surrogates");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uDC00\"}",
"unpaired low surrogate");
}
void InvalidUTF8Test() {
// "1 byte" pattern, under min length of 2 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\x80\"}",
"illegal UTF-8 sequence");
// 2 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xDF\"}",
"illegal UTF-8 sequence");
// 3 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xEF\xBF\"}",
"illegal UTF-8 sequence");
// 4 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF7\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "5 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "6 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "7 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "5 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "6 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "7 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// Three invalid encodings for U+000A (\n, aka NEWLINE)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xC0\x8A\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x80\x8A\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x80\x8A\"}",
"illegal UTF-8 sequence");
// Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x81\xA9\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x81\xA9\"}",
"illegal UTF-8 sequence");
// Invalid encoding for U+20AC (EURO SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x82\x82\xAC\"}",
"illegal UTF-8 sequence");
// UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
// UTF-8
TestError(
"table T { F:string; }"
"root_type T;"
// U+10400 "encoded" as U+D801 U+DC00
"{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
"illegal UTF-8 sequence");
// Check independence of identifier from locale.
std::string locale_ident;
locale_ident += "table T { F";
locale_ident += static_cast<char>(-32); // unsigned 0xE0
locale_ident += " :string; }";
locale_ident += "root_type T;";
locale_ident += "{}";
TestError(locale_ident.c_str(), "");
}
template<typename T>
T TestValue(const char *json, const char *type_name,
const char *decls = nullptr) {
flatbuffers::Parser parser;
parser.builder_.ForceDefaults(true); // return defaults
auto check_default = json ? false : true;
if (check_default) { parser.opts.output_default_scalars_in_json = true; }
// Simple schema.
std::string schema = std::string(decls ? decls : "") + "\n" +
"table X { y:" + std::string(type_name) +
"; } root_type X;";
auto schema_done = parser.Parse(schema.c_str());
TEST_EQ_STR(parser.error_.c_str(), "");
TEST_EQ(schema_done, true);
auto done = parser.Parse(check_default ? "{}" : json);
TEST_EQ_STR(parser.error_.c_str(), "");
TEST_EQ(done, true);
// Check with print.
std::string print_back;
parser.opts.indent_step = -1;
TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
true);
// restore value from its default
if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
}
// Additional parser testing not covered elsewhere.
void ValueTest() {
// Test scientific notation numbers.
TEST_EQ(
FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
true);
// number in string
TEST_EQ(FloatCompare(TestValue<float>("{ y:\"0.0314159e+2\" }", "float"),
3.14159f),
true);
// Test conversion functions.
TEST_EQ(FloatCompare(TestValue<float>("{ y:cos(rad(180)) }", "float"), -1),
true);
// int embedded to string
TEST_EQ(TestValue<int>("{ y:\"-876\" }", "int=-123"), -876);
TEST_EQ(TestValue<int>("{ y:\"876\" }", "int=-123"), 876);
// Test negative hex constant.
TEST_EQ(TestValue<int>("{ y:-0x8ea0 }", "int=-0x8ea0"), -36512);
TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
// positive hex constant
TEST_EQ(TestValue<int>("{ y:0x1abcdef }", "int=0x1"), 0x1abcdef);
// with optional '+' sign
TEST_EQ(TestValue<int>("{ y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
// hex in string
TEST_EQ(TestValue<int>("{ y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
// Make sure we do unsigned 64bit correctly.
TEST_EQ(TestValue<uint64_t>("{ y:12335089644688340133 }", "ulong"),
12335089644688340133ULL);
// bool in string
TEST_EQ(TestValue<bool>("{ y:\"false\" }", "bool=true"), false);
TEST_EQ(TestValue<bool>("{ y:\"true\" }", "bool=\"true\""), true);
TEST_EQ(TestValue<bool>("{ y:'false' }", "bool=true"), false);
TEST_EQ(TestValue<bool>("{ y:'true' }", "bool=\"true\""), true);
// check comments before and after json object
TEST_EQ(TestValue<int>("/*before*/ { y:1 } /*after*/", "int"), 1);
TEST_EQ(TestValue<int>("//before \n { y:1 } //after", "int"), 1);
}
void NestedListTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
"root_type T;"
"{ F:[ [10,20], [30,40]] }"),
true);
}
void EnumStringsTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
"root_type T;"
"{ F:[ A, B, \"C\", \"A B C\" ] }"),
true);
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
"root_type T;"
"{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
true);
// unsigned bit_flags
flatbuffers::Parser parser3;
TEST_EQ(
parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
" table T { F: E = \"F15 F08\"; }"
"root_type T;"),
true);
}
void EnumValueTest() {
// json: "{ Y:0 }", schema: table X { y: "E"}
// 0 in enum (V=0) E then Y=0 is valid.
TEST_EQ(TestValue<int>("{ y:0 }", "E", "enum E:int { V }"), 0);
TEST_EQ(TestValue<int>("{ y:V }", "E", "enum E:int { V }"), 0);
// A default value of Y is 0.
TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { V=5 }"), 5);
// Generate json with defaults and check.
TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
// 5 in enum
TEST_EQ(TestValue<int>("{ y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
// Generate json with defaults and check.
TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
// u84 test
TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
"enum E:ulong { V = 13835058055282163712 }"),
13835058055282163712ULL);
TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
"enum E:ulong { V = 18446744073709551615 }"),
18446744073709551615ULL);
// Assign non-enum value to enum field. Is it right?
TEST_EQ(TestValue<int>("{ y:7 }", "E", "enum E:int { V = 0 }"), 7);
// Check that non-ascending values are valid.
TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z=10, V=5 }"), 5);
}
void IntegerBoundaryTest() {
// Check numerical compatibility with non-C++ languages.
// By the C++ standard, std::numerical_limits<int64_t>::min() ==
// -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of
// the languages (C#, Java, Rust) expect that minimum values are: -128,
// -32768,.., -9223372036854775808. Since C++20,
// static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement
// cast. Therefore -9223372036854775808 should be valid negative value.
TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
-9223372036854775807LL);
TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
18446744073709551615ULL);
TEST_EQ(TestValue<int8_t>("{ y:127 }", "byte"), 127);
TEST_EQ(TestValue<int8_t>("{ y:-128 }", "byte"), -128);
TEST_EQ(TestValue<uint8_t>("{ y:255 }", "ubyte"), 255);
TEST_EQ(TestValue<uint8_t>("{ y:0 }", "ubyte"), 0);
TEST_EQ(TestValue<int16_t>("{ y:32767 }", "short"), 32767);
TEST_EQ(TestValue<int16_t>("{ y:-32768 }", "short"), -32768);
TEST_EQ(TestValue<uint16_t>("{ y:65535 }", "ushort"), 65535);
TEST_EQ(TestValue<uint16_t>("{ y:0 }", "ushort"), 0);
TEST_EQ(TestValue<int32_t>("{ y:2147483647 }", "int"), 2147483647);
TEST_EQ(TestValue<int32_t>("{ y:-2147483648 }", "int") + 1, -2147483647);
TEST_EQ(TestValue<uint32_t>("{ y:4294967295 }", "uint"), 4294967295);
TEST_EQ(TestValue<uint32_t>("{ y:0 }", "uint"), 0);
TEST_EQ(TestValue<int64_t>("{ y:9223372036854775807 }", "long"),
9223372036854775807LL);
TEST_EQ(TestValue<int64_t>("{ y:-9223372036854775808 }", "long") + 1LL,
-9223372036854775807LL);
TEST_EQ(TestValue<uint64_t>("{ y:18446744073709551615 }", "ulong"),
18446744073709551615ULL);
TEST_EQ(TestValue<uint64_t>("{ y:0 }", "ulong"), 0);
TEST_EQ(TestValue<uint64_t>("{ y: 18446744073709551615 }", "uint64"),
18446744073709551615ULL);
// check that the default works
TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
18446744073709551615ULL);
}
void ValidFloatTest() {
// check rounding to infinity
TEST_EQ(TestValue<float>("{ y:+3.4029e+38 }", "float"), +infinity_f);
TEST_EQ(TestValue<float>("{ y:-3.4029e+38 }", "float"), -infinity_f);
TEST_EQ(TestValue<double>("{ y:+1.7977e+308 }", "double"), +infinity_d);
TEST_EQ(TestValue<double>("{ y:-1.7977e+308 }", "double"), -infinity_d);
TEST_EQ(
FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
true);
// float in string
TEST_EQ(FloatCompare(TestValue<float>("{ y:\" 0.0314159e+2 \" }", "float"),
3.14159f),
true);
TEST_EQ(TestValue<float>("{ y:1 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1.0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1. }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:+1. }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:-1. }", "float"), -1.0f);
TEST_EQ(TestValue<float>("{ y:1.e0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1.e+0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1.e-0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:0.125 }", "float"), 0.125f);
TEST_EQ(TestValue<float>("{ y:.125 }", "float"), 0.125f);
TEST_EQ(TestValue<float>("{ y:-.125 }", "float"), -0.125f);
TEST_EQ(TestValue<float>("{ y:+.125 }", "float"), +0.125f);
TEST_EQ(TestValue<float>("{ y:5 }", "float"), 5.0f);
TEST_EQ(TestValue<float>("{ y:\"5\" }", "float"), 5.0f);
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
// Old MSVC versions may have problem with this check.
// https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
TEST_EQ(TestValue<double>("{ y:6.9294956446009195e15 }", "double"),
6929495644600920.0);
// check nan's
TEST_EQ(std::isnan(TestValue<double>("{ y:nan }", "double")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:\"nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:\"+nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:\"-nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:+nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:-nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
// check inf
TEST_EQ(TestValue<float>("{ y:inf }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:\"inf\" }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:\"-inf\" }", "float"), -infinity_f);
TEST_EQ(TestValue<float>("{ y:\"+inf\" }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:+inf }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:-inf }", "float"), -infinity_f);
TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinity_f);
TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinity_f);
TestValue<double>(
"{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
"3.0e2] }",
"[double]");
TestValue<float>(
"{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
"3.0e2] }",
"[float]");
// Test binary format of float point.
// https://en.cppreference.com/w/cpp/language/floating_literal
// 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
TEST_EQ(TestValue<double>("{ y:0x12.34p-1 }", "double"), 9.1015625);
// hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
TEST_EQ(TestValue<float>("{ y:-0x0.2p0 }", "float"), -0.125f);
TEST_EQ(TestValue<float>("{ y:-0x.2p1 }", "float"), -0.25f);
TEST_EQ(TestValue<float>("{ y:0x1.2p3 }", "float"), 9.0f);
TEST_EQ(TestValue<float>("{ y:0x10.1p0 }", "float"), 16.0625f);
TEST_EQ(TestValue<double>("{ y:0x1.2p3 }", "double"), 9.0);
TEST_EQ(TestValue<double>("{ y:0x10.1p0 }", "double"), 16.0625);
TEST_EQ(TestValue<double>("{ y:0xC.68p+2 }", "double"), 49.625);
TestValue<double>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
TestValue<float>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
#else // FLATBUFFERS_HAS_NEW_STRTOD
TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
#endif // !FLATBUFFERS_HAS_NEW_STRTOD
}
void UnicodeTest() {
flatbuffers::Parser parser;
// Without setting allow_non_utf8 = true, we treat \x sequences as byte
// sequences which are then validated as UTF-8.
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
"3D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestAllowNonUTF8() {
flatbuffers::Parser parser;
parser.opts.allow_non_utf8 = true;
TEST_EQ(
parser.Parse(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(
jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestGenerateTextFailsOnNonUTF8() {
flatbuffers::Parser parser;
// Allow non-UTF-8 initially to model what happens when we load a binary
// flatbuffer from disk which contains non-UTF-8 strings.
parser.opts.allow_non_utf8 = true;
TEST_EQ(
parser.Parse(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
// Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
// failure.
parser.opts.allow_non_utf8 = false;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, false);
}
void UnicodeSurrogatesTest() {
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
"root_type T;"
"{ F:\"\\uD83D\\uDCA9\"}"),
true);
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
auto string = root->GetPointer<flatbuffers::String *>(
flatbuffers::FieldIndexToOffset(0));
TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
}
void UnknownFieldsTest() {
flatbuffers::IDLOptions opts;
opts.skip_unexpected_fields_in_json = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { str:string; i:int;}"
"root_type T;"
"{ str:\"test\","
"unknown_string:\"test\","
"\"unknown_string\":\"test\","
"unknown_int:10,"
"unknown_float:1.0,"
"unknown_array: [ 1, 2, 3, 4],"
"unknown_object: { i: 10 },"
"\"unknown_object\": { \"i\": 10 },"
"i:10}"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result =
GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ(result, true);
TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
}
void ParseUnionTest() {
// Unions must be parseable with the type field following the object.
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { A:int; }"
"union U { T }"
"table V { X:U; }"
"root_type V;"
"{ X:{ A:1 }, X_type: T }"),
true);
// Unions must be parsable with prefixed namespace.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
"table B { e:U; } root_type B;"
"{ e_type: N_A, e: {} }"),
true);
}
void ValidSameNameDifferentNamespaceTest() {
// Duplicate table names in different namespaces must be parsable
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; table X {} namespace B; table X {}"));
// Duplicate union names in different namespaces must be parsable
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; union X {} namespace B; union X {}"));
// Clashing table and union names in different namespaces must be parsable
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; table X {} namespace B; union X {}"));
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; union X {} namespace B; table X {}"));
}
void WarningsAsErrorsTest() {
{
flatbuffers::IDLOptions opts;
// opts.warnings_as_errors should default to false
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
"root_type T;"),
true);
}
{
flatbuffers::IDLOptions opts;
opts.warnings_as_errors = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
"root_type T;"),
false);
}
}
void StringVectorDefaultsTest() {
std::vector<std::string> schemas;
schemas.push_back("table Monster { mana: string = \"\"; }");
schemas.push_back("table Monster { mana: string = \"mystr\"; }");
schemas.push_back("table Monster { mana: string = \" \"; }");
schemas.push_back("table Monster { mana: string = \"null\"; }");
schemas.push_back("table Monster { mana: [int] = []; }");
schemas.push_back("table Monster { mana: [uint] = [ ]; }");
schemas.push_back("table Monster { mana: [byte] = [\t\t\n]; }");
schemas.push_back("enum E:int{}table Monster{mana:[E]=[];}");
for (auto s = schemas.begin(); s < schemas.end(); s++) {
flatbuffers::Parser parser;
TEST_ASSERT(parser.Parse(s->c_str()));
const auto *mana = parser.structs_.Lookup("Monster")->fields.Lookup("mana");
TEST_EQ(mana->IsDefault(), true);
}
}
void FieldIdentifierTest() {
using flatbuffers::Parser;
TEST_EQ(true, Parser().Parse("table T{ f: int (id:0); }"));
// non-integer `id` should be rejected
TEST_EQ(false, Parser().Parse("table T{ f: int (id:text); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:\"text\"); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:0text); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:1.0); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:-1); g: int (id:0); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:129496726); }"));
// A unuion filed occupys two ids: enumerator + pointer (offset).
TEST_EQ(false,
Parser().Parse("union X{} table T{ u: X(id:0); table F{x:int;\n}"));
// Positive tests for unions
TEST_EQ(true, Parser().Parse("union X{} table T{ u: X (id:1); }"));
TEST_EQ(true, Parser().Parse("union X{} table T{ u: X; }"));
// Test using 'inf' and 'nan' words both as identifiers and as default values.
TEST_EQ(true, Parser().Parse("table T{ nan: string; }"));
TEST_EQ(true, Parser().Parse("table T{ inf: string; }"));
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
TEST_EQ(true, Parser().Parse("table T{ inf: float = inf; }"));
TEST_EQ(true, Parser().Parse("table T{ nan: float = inf; }"));
#endif
}
} // namespace tests
} // namespace flatbuffers