blob: 1b34f85820e2c183da1a36a31846fd30f32f9a04 [file] [log] [blame]
#include "flexbuffers_test.h"
#include "flatbuffers/flexbuffers.h"
#include "flatbuffers/idl.h"
#include "is_quiet_nan.h"
#include "test_assert.h"
namespace flatbuffers {
namespace tests {
// Shortcuts for the infinity.
static const auto infinity_d = std::numeric_limits<double>::infinity();
void FlexBuffersTest() {
flexbuffers::Builder slb(512,
flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
// Write the equivalent of:
// { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
// foo: 100, bool: true, mymap: { foo: "Fred" } }
// It's possible to do this without std::function support as well.
slb.Map([&]() {
slb.Vector("vec", [&]() {
slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
slb += "Fred";
slb.IndirectFloat(4.0f);
auto i_f = slb.LastValue();
uint8_t blob[] = { 77 };
slb.Blob(blob, 1);
slb += false;
slb.ReuseValue(i_f);
});
int ints[] = { 1, 2, 3 };
slb.Vector("bar", ints, 3);
slb.FixedTypedVector("bar3", ints, 3);
bool bools[] = { true, false, true, false };
slb.Vector("bools", bools, 4);
slb.Bool("bool", true);
slb.Double("foo", 100);
slb.Map("mymap", [&]() {
slb.String("foo", "Fred"); // Testing key and string reuse.
});
});
slb.Finish();
// clang-format off
#ifdef FLATBUFFERS_TEST_VERBOSE
for (size_t i = 0; i < slb.GetBuffer().size(); i++)
printf("%d ", slb.GetBuffer().data()[i]);
printf("\n");
#endif
// clang-format on
std::vector<uint8_t> reuse_tracker;
TEST_EQ(flexbuffers::VerifyBuffer(slb.GetBuffer().data(),
slb.GetBuffer().size(), &reuse_tracker),
true);
auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
TEST_EQ(map.size(), 7);
auto vec = map["vec"].AsVector();
TEST_EQ(vec.size(), 6);
TEST_EQ(vec[0].AsInt64(), -100);
TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
TEST_EQ(vec[2].AsDouble(), 4.0);
TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
// Few tests for templated version of As.
TEST_EQ(vec[0].As<int64_t>(), -100);
TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
TEST_EQ(vec[2].As<double>(), 4.0);
// Test that the blob can be accessed.
TEST_EQ(vec[3].IsBlob(), true);
auto blob = vec[3].AsBlob();
TEST_EQ(blob.size(), 1);
TEST_EQ(blob.data()[0], 77);
TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
TEST_EQ(vec[4].AsBool(), false); // Check if value is false
TEST_EQ(vec[5].AsDouble(), 4.0); // This is shared with vec[2] !
auto tvec = map["bar"].AsTypedVector();
TEST_EQ(tvec.size(), 3);
TEST_EQ(tvec[2].AsInt8(), 3);
auto tvec3 = map["bar3"].AsFixedTypedVector();
TEST_EQ(tvec3.size(), 3);
TEST_EQ(tvec3[2].AsInt8(), 3);
TEST_EQ(map["bool"].AsBool(), true);
auto tvecb = map["bools"].AsTypedVector();
TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
TEST_EQ(map["foo"].AsUInt8(), 100);
TEST_EQ(map["unknown"].IsNull(), true);
auto mymap = map["mymap"].AsMap();
// These should be equal by pointer equality, since key and value are shared.
TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
// We can mutate values in the buffer.
TEST_EQ(vec[0].MutateInt(-99), true);
TEST_EQ(vec[0].AsInt64(), -99);
TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
TEST_EQ_STR(vec[1].AsString().c_str(), "John");
TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
TEST_EQ(vec[2].MutateFloat(2.0f), true);
TEST_EQ(vec[2].AsFloat(), 2.0f);
TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
TEST_EQ(vec[4].AsBool(), false); // Is false before change
TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
// Parse from JSON:
flatbuffers::Parser parser;
slb.Clear();
auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
TEST_EQ(flexbuffers::VerifyBuffer(slb.GetBuffer().data(),
slb.GetBuffer().size(), &reuse_tracker),
true);
auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
auto jmap = jroot.AsMap();
auto jvec = jmap["a"].AsVector();
TEST_EQ(jvec[0].AsInt64(), 123);
TEST_EQ(jvec[1].AsDouble(), 456.0);
TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
// And from FlexBuffer back to JSON:
auto jsonback = jroot.ToString();
TEST_EQ_STR(jsontest, jsonback.c_str());
slb.Clear();
slb.Vector([&]() {
for (int i = 0; i < 130; ++i) slb.Add(static_cast<uint8_t>(255));
slb.Vector([&]() {
for (int i = 0; i < 130; ++i) slb.Add(static_cast<uint8_t>(255));
slb.Vector([] {});
});
});
slb.Finish();
TEST_EQ(slb.GetSize(), 664);
}
void FlexBuffersReuseBugTest() {
flexbuffers::Builder slb;
slb.Map([&]() {
slb.Vector("vec", [&]() {});
slb.Bool("bool", true);
});
slb.Finish();
std::vector<uint8_t> reuse_tracker;
// This would fail before, since the reuse_tracker would use the address of
// the vector reference to check for reuse, but in this case we have an empty
// vector, and since the size field is before the pointer, its address is the
// same as thing after it, the key "bool".
// We fix this by using the address of the size field for tracking reuse.
TEST_EQ(flexbuffers::VerifyBuffer(slb.GetBuffer().data(),
slb.GetBuffer().size(), &reuse_tracker),
true);
}
void FlexBuffersFloatingPointTest() {
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
flexbuffers::Builder slb(512,
flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
// Parse floating-point values from JSON:
flatbuffers::Parser parser;
slb.Clear();
auto jsontest =
"{ a: [1.0, nan, inf, infinity, -inf, +inf, -infinity, 8.0] }";
TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
TEST_EQ(flexbuffers::VerifyBuffer(slb.GetBuffer().data(),
slb.GetBuffer().size(), nullptr),
true);
auto jmap = jroot.AsMap();
auto jvec = jmap["a"].AsVector();
TEST_EQ(8, jvec.size());
TEST_EQ(1.0, jvec[0].AsDouble());
TEST_ASSERT(is_quiet_nan(jvec[1].AsDouble()));
TEST_EQ(infinity_d, jvec[2].AsDouble());
TEST_EQ(infinity_d, jvec[3].AsDouble());
TEST_EQ(-infinity_d, jvec[4].AsDouble());
TEST_EQ(+infinity_d, jvec[5].AsDouble());
TEST_EQ(-infinity_d, jvec[6].AsDouble());
TEST_EQ(8.0, jvec[7].AsDouble());
#endif
}
void FlexBuffersDeprecatedTest() {
// FlexBuffers as originally designed had a flaw involving the
// FBT_VECTOR_STRING datatype, and this test documents/tests the fix for it.
// Discussion: https://github.com/google/flatbuffers/issues/5627
flexbuffers::Builder slb;
// FBT_VECTOR_* are "typed vectors" where all elements are of the same type.
// Problem is, when storing FBT_STRING elements, it relies on that type to
// get the bit-width for the size field of the string, which in this case
// isn't present, and instead defaults to 8-bit. This means that any strings
// stored inside such a vector, when accessed thru the old API that returns
// a String reference, will appear to be truncated if the string stored is
// actually >=256 bytes.
std::string test_data(300, 'A');
auto start = slb.StartVector();
// This one will have a 16-bit size field.
slb.String(test_data);
// This one will have an 8-bit size field.
slb.String("hello");
// We're asking this to be serialized as a typed vector (true), but not
// fixed size (false). The type will be FBT_VECTOR_STRING with a bit-width
// of whatever the offsets in the vector need, the bit-widths of the strings
// are not stored(!) <- the actual design flaw.
// Note that even in the fixed code, we continue to serialize the elements of
// FBT_VECTOR_STRING as FBT_STRING, since there may be old code out there
// reading new data that we want to continue to function.
// Thus, FBT_VECTOR_STRING, while deprecated, will always be represented the
// same way, the fix lies on the reading side.
slb.EndVector(start, true, false);
slb.Finish();
// Verify because why not.
TEST_EQ(flexbuffers::VerifyBuffer(slb.GetBuffer().data(),
slb.GetBuffer().size(), nullptr),
true);
// So now lets read this data back.
// For existing data, since we have no way of knowing what the actual
// bit-width of the size field of the string is, we are going to ignore this
// field, and instead treat these strings as FBT_KEY (null-terminated), so we
// can deal with strings of arbitrary length. This of course truncates strings
// with embedded nulls, but we think that that is preferrable over truncating
// strings >= 256 bytes.
auto vec = flexbuffers::GetRoot(slb.GetBuffer()).AsTypedVector();
// Even though this was serialized as FBT_VECTOR_STRING, it is read as
// FBT_VECTOR_KEY:
TEST_EQ(vec.ElementType(), flexbuffers::FBT_KEY);
// Access the long string. Previously, this would return a string of size 1,
// since it would read the high-byte of the 16-bit length.
// This should now correctly test the full 300 bytes, using AsKey():
TEST_EQ_STR(vec[0].AsKey(), test_data.c_str());
// Old code that called AsString will continue to work, as the String
// accessor objects now use a cached size that can come from a key as well.
TEST_EQ_STR(vec[0].AsString().c_str(), test_data.c_str());
// Short strings work as before:
TEST_EQ_STR(vec[1].AsKey(), "hello");
TEST_EQ_STR(vec[1].AsString().c_str(), "hello");
// So, while existing code and data mostly "just work" with the fixes applied
// to AsTypedVector and AsString, what do you do going forward?
// Code accessing existing data doesn't necessarily need to change, though
// you could consider using AsKey instead of AsString for a) documenting
// that you are accessing keys, or b) a speedup if you don't actually use
// the string size.
// For new data, or data that doesn't need to be backwards compatible,
// instead serialize as FBT_VECTOR (call EndVector with typed = false, then
// read elements with AsString), or, for maximum compactness, use
// FBT_VECTOR_KEY (call slb.Key above instead, read with AsKey or AsString).
}
void ParseFlexbuffersFromJsonWithNullTest() {
// Test nulls are handled appropriately through flexbuffers to exercise other
// code paths of ParseSingleValue in the optional scalars change.
// TODO(cneo): Json -> Flatbuffers test once some language can generate code
// with optional scalars.
{
char json[] = "{\"opt_field\": 123 }";
flatbuffers::Parser parser;
flexbuffers::Builder flexbuild;
parser.ParseFlexBuffer(json, nullptr, &flexbuild);
auto root = flexbuffers::GetRoot(flexbuild.GetBuffer());
TEST_EQ(root.AsMap()["opt_field"].AsInt64(), 123);
}
{
char json[] = "{\"opt_field\": 123.4 }";
flatbuffers::Parser parser;
flexbuffers::Builder flexbuild;
parser.ParseFlexBuffer(json, nullptr, &flexbuild);
auto root = flexbuffers::GetRoot(flexbuild.GetBuffer());
TEST_EQ(root.AsMap()["opt_field"].AsDouble(), 123.4);
}
{
char json[] = "{\"opt_field\": null }";
flatbuffers::Parser parser;
flexbuffers::Builder flexbuild;
parser.ParseFlexBuffer(json, nullptr, &flexbuild);
auto root = flexbuffers::GetRoot(flexbuild.GetBuffer());
TEST_ASSERT(!root.AsMap().IsTheEmptyMap());
TEST_ASSERT(root.AsMap()["opt_field"].IsNull());
TEST_EQ(root.ToString(), std::string("{ opt_field: null }"));
}
}
} // namespace tests
} // namespace flatbuffers